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We introduce the concept of partial-tunneling and full-tunneling processes to explain the seemingly
contradictory non-zero and vanishing tunneling times often reported in the literature. Our analysis
starts by considering the traversal time of a quantum particle through a potential barrier, including
both above and below-barrier traversals, using the theory of time-of-arrival operators. We then show
that there are three traversal processes corresponding to non-tunneling, full-tunneling, and partial
tunneling. The distinction between the three depends on the support of the incident wavepacket’s
energy distribution in relation to the shape of the barrier. Non-tunneling happens when the energy
distribution of the quantum particle lies above the maximum of the potential barrier. Otherwise,
full-tunneling process occurs when the energy distribution of the particle is below the minimum of
the potential barrier. For this process, the obtained traversal time is interpreted as the tunneling
time. Finally, the partial-tunneling process occurs when the energy distribution lies between the
minimum and maximum of the potential barrier. This signifies that the quantum particle tunneled
only through some portions of the potential barrier. We argue that the duration for a partial-
tunneling process should not be interpreted as the tunneling time but instead as a partial traversal
time to differentiate it from the full-tunneling process. We then show that a full-tunneling process
is always instantaneous, while a partial-tunneling process takes a non-zero amount of time. We are
then led to the hypothesis that experimentally measured non-zero and vanishing tunneling times
correspond to partial and full-tunneling processes, respectively.

The time it takes for a quantum particle to tunnel
through a potential barrier has always eluded physicists
since the advent of quantum mechanics [1, 2]. A num-
ber of tunneling time definitions have been offered in the
literature [3–13], e.g., Wigner phase time [3], Büttiker-
Landauer time [4], Larmor time [5–7], Pollak-Miller time
[8], dwell time [9]; but a consensus on whether quantum
tunneling is instantaneous or not is yet to be reached
[14–21]. The development of ultraprecise techniques in
strong-field physics has been expected to close the debate
once and for all, but the existence of contradictory ex-
perimental results only further divided the physics com-
munity [22–29]. This diversity poses a challenge to the-
oretical treatments that only predict either zero or non-
zero tunneling times, imploring a formalism that could
accommodate both seemingly contradictory results. In
this Letter, we offer such a formalism using the theory of
time-of-arrival (TOA) operators [30].

We start our analysis by investigating the expected
quantum traversal time across a contiguous barrier sys-
tem, i.e., V (q) = V1 for −a < q < −l and V (q) = V2
for −l < q < −b, where V1 < V2. We define the
traversal time as the amount of time a particle traverses
through the barrier region, including both above-barrier
and below-barrier traversals. We choose a contiguous
potential barrier, instead of the usual square barrier, as
it naturally showcases three possible traversal processes:
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(i) non-tunneling, (ii) full-tunneling, (iii) and partial-
tunneling. The distinction between these three processes
is shown in Fig. (1). Non-tunneling or classical above-
barrier traversal happens when the energy distribution
E of the quantum particle lies entirely above V2. Mean-
while, full-tunneling process occurs when the energy dis-
tribution of the particle is entirely below V1. The partial-
tunneling process occurs when the energy distribution
that lies between V1 and V2. This physically suggests that
the quantum particle traversed above V1 and tunneled
through V2, not the entire barrier region. The single
square barrier can only describe the first two processes.
We will show later that full-tunneling is always instanta-
neous while partial-tunneling and non-tunneling takes a
non-zero amount of time. A double square barrier system
has also been considered in Ref. [31] but their analysis
is focused on the generalized Hartman effect, which is
different to the current paper’s objectives.
With clear distinctions between the three traversal pro-

FIG. 1. Three traversal processes involving a quantum par-
ticle with incident energy E traversing through a contiguous
square barrier system.
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FIG. 2. Measurement scheme for the expected quantum
traversal time.

cesses, we now determine the corresponding quantum
traversal time. We work under the assumption that there
exists a TOA-operator T̂ corresponding to an arrival at
some specific point in the configuration space for a given
interaction potential V (q). The traversal time can be
extracted by determining the arrival time difference be-
tween two identical wave packets, the first one encounters
a potential barrier while the other traverses freely with-
out obstruction [31, 32].

Our measurement scheme follows the prescription of
Refs. [31–35] and shown in Fig. (2). We place a detector
DT at the far right of the barrier system to announce
the arrival of the particle at the origin q = 0. Likewise,
a similar detector DR is placed at the far left of DT . A
localized wave packet ψ(q) is launched in between the po-
tential V (q) and detector DR towards the origin at time
t = 0. An arrival time is measured when DT clicks while
no measurement is recorded when DR clicks. An average
barrier TOA, τ̄B , can be obtained when the same ex-
periment is repeated over a large number of trials, with
the same initial state for every measurement. A simi-
lar experiment is then performed in the absence of the
potential barrier. The average free TOA, τ̄F , is also mea-
sured with the detector DT . The barrier traversal time
is then extracted from the difference ∆τ̄ = τ̄F − τ̄B .

The above measurement scheme essentially coincides
with the tunneling delay time used by Steinberg, Kwiat,
and Chiao in their seminal single-photon tunneling time
experiment [36]. They employed a two-photon source in
which pairs of photons are emitted simultaneously. One
particle traverses a tunnel barrier while the other twin
particle encounters no barrier. Their operational defini-
tion of tunneling time is extracted from the comparison
between the TOA of the two conjugate particles. The dif-
ference, however, with our measurement scheme is that
what they measured is −∆τ̄ .
Within the theory of TOA-operators, the measured av-

erage value τ̄B can be obtained as the expectation value
of some barrier TOA-operator T̂B for a given state ψ,
that is, τ̄B = ⟨ψ|T̂B |ψ⟩. Similarly, the average free time-

of-arrival appears as τ̄F = ⟨ψ|T̂F |ψ⟩, where T̂F is the

corresponding free-particle TOA-operator. The arrival
time difference then assumes the form

∆τ̄ = ⟨ψ|T̂F |ψ⟩ − ⟨ψ|T̂B |ψ⟩. (1)

We highlight that ∆τ̄ is not yet the barrier traversal time
itself, but the latter can be obtained from it.
Using the rigged Hilbert space formulation of quantum

mechanics, a TOA-operator has the general form

(T̂ψ)(q) =
µ

iℏ

∫ ∞

−∞
dq′ T (q, q′) sgn(q − q′)ψ(q′), (2)

in coordinate representation [30]. The factor sgnz is the
signum function, µ is the mass of the incident particle,
and T (q, q′) is referred to as the time kernel factor (TKF).

The construction of the integral operator T̂ then trans-
lates to the construction of T (q, q′) for a given interac-
tion potential V (q). A closed-form expression for T (q, q′)
can be obtained by performing Weyl-quantization on the
classical TOA at the origin TC(q, p) given by

TC(q, p) = −sgn(p)

√
µ

2

∫ q

0

dq′√
H(q, p)− V (q′)

. (3)

The quantization, however, should be restricted to the
trajectories that pass through the arrival point and coin-
cides with the first arrival of the particle [30]. This gives
the following Weyl-quantized TKF,

T̃ (η, ζ) =
1

2

∫ η

0

ds 0F1

[
; 1;

µ

2ℏ2
(V (η)− V (s)) ζ2

]
, (4)

where, T (q, q′) = T̃ (η, ζ), η = (q + q′)/2, ζ = q − q′,
and 0F1(; a; z) is a particular hypergeometric function
[30]. Equation (2), together with Eq. (4), define a TOA-
operator that satisfies Hermiticity, time-reversal symme-
try, and Dirac’s correspondence between classical and
quantum observables.
Now, in the absence of a potential barrier, substitu-

tion of V (q) = 0 into Eq. (4) yields the free TKF

T̃F (η, ζ) = η/2 or equivalently TF (q, q
′) = (q + q′)/4.

Substitution of TF (q, q
′) into Eq. (2) gives the free

TOA-operator T̂F which is equivalent to (T̂ABψ)(q) =∫
dq′⟨q|T̂AB |q′⟩ψ(q′), where T̂AB = −(µ/2)(q̂p̂−1 +

p̂−1q̂) is the well-known Aharonov-Bohm free time op-

erator [37]. Note that T̂F is canonically conjugate with

the free Hamiltonian ĤF = p̂2/2µ.

On the other hand, the barrier TOA-operator T̂B is
constructed by solving for the barrier TKF TB(q, q

′) =

T̃B(η, ζ). This is done by dividing the s integral in Eq.
(4) into four non-overlapping regions separated by the
edges of the two distinct barriers. The barrier TKF
T̃B(η, ζ) then have four pieces corresponding to the four
regions described in Fig. (2) and are given by

T̃B,I(η, ζ) =
η

2
, (5a)

T̃B,II(η, ζ) =
η + b

2
− w1

2
I0(κ1|ζ|), (5b)
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T̃B,III(η, ζ) =
η + b+ w1

2
− b

2
I0(κ2|ζ|) (5c)

− w1

2
0F1

(
; 1;

κ221
4
ζ2
)
, (5d)

T̃B,IV (η, ζ) =
η + L

2
−

∑
n=1,2

wn

2
J0(κn|ζ|), (5e)

where κn =
√
2µVn/ℏ for n = 1, 2, κ22,1 = 2µ(V2−V1)/ℏ2,

and wn are the widths of each barrier [31]. The above re-
sults have been derived using the identities 0F1(; 1, x) =
I0(2

√
x) for x > 0 and 0F1(; 1, x) = J0(2

√
x) for x < 0,

where I0(z) and J0(z) are specific Bessel functions. Sub-
stitution of Eq. (5) into Eq. (2) gives the barrier TOA-

operator T̂B . It can be shown that T̂B with the TKF
T̃B,r(η, ζ) for r = I, II, III, IV is canonically conjugate
with the Hamiltonians in the respective regions, r [38].

Having constructed the operators T̂B and T̂F , we now
evaluate the arrival time difference ∆τ̄ in Eq. (1). We
assume an incident wave packet of the form ψ(q) =
eikoq/ℏφ(q) centered at q = qo with a mean momentum
expectation value po = ℏko. We also impose the support
of φ(q) to lie entirely to the left of the barrier system. The
latter assumption suggests that there is a zero probabil-
ity that the quantum particle is already within the bar-
rier region or at the transmission side at the initial time
t = 0. Under this condition, our barrier TOA-operator
T̂B depends only on the piece T̃B,IV (η, ζ).

In the (η, ζ) coordinates, the arrival time difference can
be rewritten in the form

∆τ̄ = −2µ

ℏ
Im

∫ ∞

0

dζ Φ(ζ) eik0ζ
[
T̃F (η)− T̃B,IV (η, ζ)

]
,

(6)
where, Φ(ζ) =

∫∞
−∞ dη φ̄(η − ζ/2)φ(η + ζ/2), and Im(z)

denotes the imaginary part of the integral. Evaluation of
Eq. (6) leads to

∆τ̄ =
L

v0
ImQ∗ −

2∑
n=1

wn

v0
ImR∗

n, (7a)

Q∗ =ko

∫ ∞

0

dζΦ(ζ) eik0ζ , (7b)

R∗
n =ko

∫ ∞

0

dζΦ(ζ) J0(κnζ) e
ik0ζ . (7c)

We determine the physical significance of ∆τ̄ by tak-
ing its classical limit. This is done by considering the
high energy limit k0 → ∞ for fixed κn. One then finds
the factor ImQ∗ ∼ 1 while ImR∗

n ∼ v0/vn, where vn is
the particle’s speed on top of the barrier with width wn.
Since ImR∗

n depends on the ratio between the speeds
v0 and vn, we can interpret it as the index of refrac-
tion of the nth barrier. Hence, we find the relation
∆τ̄ ∼ L/v0 −

∑2
n=1 wn/vn. The first term is simply the

free classical TOA across the region of length L. On the
other hand, the second term is identified as the classical
barrier traversal time.

The above classical limits suggest that the expected
quantum traversal time across the barrier region can be
extracted from the second term of Eq. (7a). Evaluation
of R∗

n using the Fourier transform of the full incident

wave function ψ(q), i.e., ψ̃(k) = (2π)−1/2
∫∞
−∞ e−ikqψ(q),

the second term leads to

τ̄B =

2∑
n=1

wn

ν0

∫ ∞

κn

dk
|ψ̃(k)|2 − |ψ̃(−k)|2√

k2 − κ2n
. (8)

Equation (8) clearly shows the contribution of the posi-
tive and negative momentum components of the incident
wave function ψ̃(k). Within our framework, τ̄B can be
interpreted as the dwell time in the barrier region which
is the total average time that our incident particle spends
in the barrier, regardless of transmission (where the pos-
itive components dominate) or reflection.
The measurable quantum traversal time τ̄trav at the

transmission channel then comes from the positive mo-
mentum components. Hence, we can now define the bar-
rier traversal time as

τ̄trav =

2∑
n=1

µwn

ℏ k0

∫ ∞

κn

dk
|ψ̃(k)|2√
k2 − κ2n

. (9)

To extract the time durations for the three tunneling
processes, we rewrite Eq. (9) as

τ̄trav =
L

νo
(Rpart +Rnon), (10a)

Rpart =
w1ko
L

∫ κ2

κ1

dk
|ψ̃(k)|2√
k2 − κ21

, (10b)

Rnon =
ko
L

2∑
n=1

wn

∫ ∞

κ2

dk
|ψ̃(k)|2√
k2 − κ2n

. (10c)

Both Eqs. (9) and (10a) clearly suggest that only the
energy components satisfying k > κ1 contribute to any
measurable quantum traversal time, in keeping with the
results of Refs. [31, 32]. In addition, we can extract three
specific traversal time regimes from Eq. (10a) depending

on the support of the distribution |ψ̃(k)|2. These regimes
coincide with our definition of (i) non-tunneling or clas-
sical above-barrier traversal, (ii) full-tunneling, and (iii)
partial-tunneling processes.
The non-tunneling regime occurs when the distribu-

tion |ψ̃(k)|2 has a compact support in k > κ2 such that
the full energy distribution of the incident wave packet
lies above the two potential barrier heights. The quan-
tity τ̄non = (L/νo)Rnon from Eq. (10c) then gives the
expected above-barrier quantum traversal time and can
be rewritten as

τ̄non =

2∑
n=1

µwn

ℏk0

∫ ∞

κ2

dk |ψ̃(k)|2 τ(k), (11)

where τ(k) = ℏ
√
k2 − κ2n/µ are just the classical traver-

sal times on top of entire barrier system.
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The full-tunneling regime occurs when the support of
|ψ̃(k)|2 lies below κ1, so that Eq. (9), or equivalently
Eq. (10a), results to a vanishing traversal time. Since all
the energy components are below the barrier heights, the
vanishing traversal time is interpreted as instantaneous
tunneling time, that is,

τ̄tun = 0. (12)

Last, the partial-tunneling regime occurs when the mo-
mentum distribution |ψ̃(k)|2 has components that lie be-
tween κ1 < k < κ2. These components that lie be-
tween κ1 < k < κ2 corresponds to a particle that tra-
verses above V1 and tunnels through V2. Thus, the
particle did not tunnel through the entire barrier sys-
tem, hence, the name partial-tunneling. The quantity
τ̄part = (L/νo)Rpart is now interpreted as a “partial-
traversal time” since Eq. (10b) indicates that the mea-
sured value originates from the momentum components
that traversed above the barrier V1.
We wish to highlight that the resolution of the quan-

tum tunneling time problem starts when everyone agrees
that the term tunneling time be used to describe a full-
tunneling process. When an incident particle only par-
tially tunnels through a barrier region, one should avoid
using the term tunneling time. For our case, we used the
term partial-traversal time. Within our framework, we
conclude that quantum tunneling, whenever it happens,
is always instantaneous.

The above results hold in general. We can model an
arbitrary potential barrier V (q) as a system of compos-
ite square barriers with varying heights and widths, i.e.,
V (q) =

∑∞
n=1 Vn each having a width wn. In the contin-

uous limit, wn → 0, the barrier traversal time is

τ̄trav =
L

νo
(Rpart +Rnon), (13a)

Rpart =
ko
L

∫ a

b

dx

∫ κmax

κ(x)

dk
|ψ̃(k)|2√
k2 − κ(x)2

, (13b)

Rnon =
ko
L

∫ a

b

dx

∫ ∞

κmax

dk
|ψ̃(k)|2√
k2 − κ(x)2

, (13c)

where κmax =
√
2µVmax/ℏ indicates the maximum value

of the the barrier height and κ(x) =
√

2µV (x)/ℏ2.
Notice the distinction between traversal time and tun-

neling time. For the general case when a wave packet has
both above, below, and in-between barrier energy com-
ponents, the traversal time through a potential barrier is
the sum of the vanishing tunneling time τ̄tun, non-zero
partial traversal time τ̄part, and above-barrier traversal
time τ̄non, i.e.,

τ̄trav = τ̄tun + τ̄part + τ̄non = τ̄part + τ̄non. (14)

If one does not properly differentiate partial and full-
tunneling processes, the contribution of the partial
traversal time may be mistakenly identified as the tun-
neling time especially if one only considers tunneling with
respect to κmax.

For a square potential barrier system, we can simply
take V (x) = V0 so that τ̄part = τ̄tun = 0. Quantum tun-
neling for this case is only described by a full-tunneling
process, and we recover the predictions of Ref. [32] that
only above barrier energy components contribute to the
barrier traversal time. For smooth barriers with compact
support, Eq. (13b) indicates that the partial traversal
time τ̄part = (L/νo)Rpart will always be non-zero since
the κmin = 0, provided that a segment of the support of
ψ̃(k) is below κmax. Thus, quantum tunneling for this
case is only described by a partial-tunneling process.

The main advantage of our treatment in comparison
with other tunneling time definitions is its simplicity and
generality. Specifically, other tunneling time definitions
such as the Büttiker-Landauer time, Larmor time, and
Pollak-Miller time involves calculating the transmission
amplitude for propagating through the barrier, which
will require solving the Schödinger equation. However,
our treatment only requires information on the incident
wavepacket and the interaction potential, which allows it
to be applicable in any system without the need of any
further calculations. Of course, our current analysis is an-
chored on the assumption that the incident wavepacket
does not initially ‘leak’ into the barrier. In addition, our
treatment encompasses both non-zero and zero traver-
sal times depending on the initial state of the particle
and the shape of the potential barrier system. This is
not obtained in other approaches so it makes sense why
they cannot explain the seemingly contradictory reports
in tunneling time experiments.

Following our results, we conclude that the non-zero
tunneling time reported in Ref. [36] is due to a partial-
tunneling process. Specifically, the tunnel barrier used
was a multilayer dielectric mirror that has an (HL)5H
structure, where H represents titanium oxide with a re-
fractive index of nH = 2.22 while L represents fused silica
with a refractive index of nL = 1.41. This setup is an op-
tical analogue of a system of contiguous square barriers
with heights VH and VL, where VL < VH , and can be con-
sidered as a potential barrier with jump discontinuities.
Since there was no way that the momentum distribution
of the incident photon can be controlled such that all the
momentum components are below VL, then the photon
exhibits partial tunneling resulting to a non-zero partial
traversal time.

We also argue that τ̄part may explain any upper bound
in the tunneling time of attoclock experiments which re-
ported instantaneous tunneling time [22, 24–27]. In par-
ticular, theoretical modelling of quantum tunneling in
strong field-physics based on Simpleman’s model consid-
ers an electron which starts from a bound state and tun-
nels through the barrier to become a continuum state.
The atomic Coulomb potential Va(q) = −Zeff/q is dis-
torted by an external electric field E to create an effec-
tive potential barrier Veff (q) = −Zeff/q − Eq as shown
in Fig. (3), where Zeff is the effective nuclear charge
[39]. Semiclassical analysis of tunneling time considers
the electron traversing through the barrier Veff (q) of
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FIG. 3. Potential curves for a Helium atom in the pres-
ence of an external electric field E with Zeff = 1.6875,
Ip = 0.90357au. In strong-field physics, an electron with
bound state energy −Ip tunnels through the an effective po-
tential barrier Veff = −Zeff/q − Eq shown in the red line.
The above model is based on the analysis of Ref. [39].

length d with point d being considered as the classical
tunnel exit. The corresponding tunneling time is called
the Keldysh time.

It has been argued that the Keldysh time may sub-
stantially exceed the actual tunneling time [40]. In our
formalism, this process is exactly a partial-tunneling pro-
cess since the particle has an above-barrier energy com-
ponent in the region between the turning point d+ and
classical exit d. Assuming there is a zero probability that
the particle is already in the barrier region, the non-zero

Keldysh time corresponds to our non-vanishing partial-
traversal time and the reason why the former exceeds the
actual tunneling time is due to the contribution of the
above-barrier energy components of the incident parti-
cle. Hence, the Keldysh time should not be interpreted
as the tunneling time. Another way to show a substan-
tial non-vanishing traversal time is when the support of
the particle’s initial state extends into the barrier region
which follows from the result of Ref. [31].
On the other hand, quantum tunneling based on Kul-

lie’s model considers tunneling where a particle enters
the barrier region at point d− and exits at point d+ [41].
It is found that tunneling time decreases as a function of
increasing field strength E [40, 41]. In our framework,
this can be explained by the decrease in the contribution
of the above-barrier energy components of the incident
particle. For sufficiently strong electric field, all energy
components are exactly below the effective potential bar-
rier so that we get an instantaneous quantum tunneling.
It is often mentioned that the tunneling time using

attoclock ionization technique gives seemingly contradic-
tory results. Some experiments suggest an instantaneous
quantum tunneling while some find the opposite result.
One may argue that our model does not exactly coincide
with attoclock experiments. However this is not entirely
true since the character of these experiments still reduce
to our current model. That is, a quantum particle travels
through a potential barrier and is detected at the other
side. The time it takes to traverse the barrier is then mea-
sured. Following our results, we are led to the hypothesis
that experimentally measured non-zero tunneling times
correspond to partial-tunneling processes while vanishing
tunneling times correspond to full-tunneling processes.
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