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We provide a full account of our recent report [EPL, 141 (2023) 10001] which constructed
a quantized relativistic time-of-arrival operator for spin-0 particles using a modified Weyl-
ordering rule to calculate the traversal time across a square barrier. It was shown that the
tunneling time of a relativistic spin-0 particle is instantaneous under the condition that the
barrier height Vo is less than the rest mass energy. This implies that instantaneous tunneling
is an inherent quantum effect in the context of arrival times.

I. INTRODUCTION

Tunneling is one of the most well-known quantum effects and has been a long standing important
subject of quantum mechanics. The simplest tunneling phenomenon is demonstrated by a square
potential barrier wherein the Schrödinger equation predicts a non-zero probability that a particle
initially on the far left of the barrier is transmitted to the far right even if its energy is less than the
barrier height. However, tunneling becomes problematic when one associates the time it takes
a wavepacket to traverse the classically forbidden region1,2 because it is compounded with the
quantum time problem (QTP), and superluminality. Standard quantum mechanics only treats time
as a parameter, as such, the quantum tunneling time problem may be ill-defined because there
is no canonical formalism in standard quantum mechanics to answer questions regarding time
durations3,4. Moreover, a dynamical treatment of time, e.g., a time operator, has been met with
pessimism because of Pauli’s no-go theorem5 on the existence of a time operator. This has led to
several definitions of tunneling time using a parametric approach, e.g. Wigner phase time6, Büttiker-
Landauer time7, Larmor time8–10, Pollak-Miller time11, dwell time12, among many others13–22.
However, one of us has shown that Pauli’s no-go theorem does not hold in the single Hilbert space
formulation of quantum mechanics23 and constructed a corresponding barrier traversal time operator
to calculate the tunneling time15. By doing so, tunneling time was treated as a dynamical observable
which addresses any contentions on tunneling time being an ill-defined problem.

There are still debates on the the validity of the various proposals and its corresponding physical
meaning when it predicts apparent superluminal velocities24. Several experiments25–33 to measure
the tunneling time have confirmed the superluminal behavior of a tunneling particle but there
is no consensus on whether the particle is transmitted instantaneously or if it spends a finite
time inside the barrier. Moreover, the relation between these various proposed tunneling times
is still unclear but it has recently been argued that these tunneling times can be classified into
two distinct categories34, i.e., arrival time and interaction time. The former is concerned with
the appearance of the tunneled particle at the far side of the barrier while the latter determines
the time duration spent inside the barrier. Tunneling time as an “arrival time” is demonstrated by
attoclock experiments while “interaction time” by Larmor clock experiments34. Some attoclock
experiments have reported instantaneous25–30 tunneling while others reported finite tunneling
times31,32. Moreover, a recent Larmor clock experiment has also reported finite tunneling time33.
Now, whether tunneling is instantaneous or not, the crux of the problem is that both results imply
that the particle exhibits superluminal behavior below the barrier. This now raises the question on
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whether the superluminality is a consequence of using non-relativistic quantum mechanics, i.e.,
could there a fundamental difference if one uses a relativistic theory?

There have been several studies to extend the analysis of tunneling times to the relativistic case in
order to adequately address the superluminal behavior35–38. It was shown by de Leo and Rotelli35,
then separately again by de Leo36 whom used the phase time via the Dirac equation in a step
potential to show that superluminal tunneling times is still present. Petrillo and Janner37 obtained
similar results for a square barrier via the Dirac equation. Krekora, Su, and Grobe38 also used
the Dirac equation for various potential barriers of the form V (x) = Voe−(2x/w)n

with an effective
width w, and defined an “instantaneous tunneling speed” to show superluminal tunneling under
the condition that the barrier height Vo is less than twice the rest mass energy. This apparent
superluminal behavior despite the relativistic treatment implies that the superluminal behavior is
an inherent quantum effect.

In this paper, we give a full account of our recent report39 which proposed a formalism on
the construction of quantized relativistic TOA-operators for spin-0 particles in the presence of
an interaction potential. This was then used to construct a corresponding barrier traversal time
operator. By doing so, the formalism can simultaneously addresses the compounding problems of
superluminality and the QTP in tunneling times. Now, it is well-known that relativistic quantum
mechanics is not a well-defined one-particle theory since relativistic effects can lead to spontaneous
pair-creation and annihilation which might render the concept of TOA meaningless, i.e., we are not
sure if the particle that tunneled and arrived is the same particle we initially had. To address this,
we will impose the condition that the barrier height is less than the rest mass energy.

The rest of the paper is structured as follows. In Sec. II we review the construction of quantized
non-relativistic TOA-operators in coordinate representation using Weyl, Born-Jordan, and simple
symmetric ordering40 which will then be modified to construct the corresponding relativistic
counterpart for spin-0 particles in Sec. III. The barrier traversal time operator is then constructed
in Sec. IV and will be shown to reduce to the correct classical limit as h̄→ 0 in Sec. V. Next, we
establish the expected barrier traversal time and show that tunneling is instantaneous in Sec. VI,
regardless of the ordering rule used. A single Gaussian wavepacket is then used as an example in
Sec. VII. Last, we conclude in Sec. VIII.

II. REVIEW OF QUANTIZED NON-RELATIVISTIC TOA-OPERATORS

The rigorous mathematical framework of quantum mechanics was developed by von Neumann
using the Hilbert space H as its underlying linear topological space wherein physical observables
are generally identified with maximally symmetric densely defined operators Â in H while
physical states are represented by the set of unit rays |ψ〉 in H . The eigenvalues of these
operators then represent the possible measurement outcomes of the corresponding observable and
its spectrum may be discrete, continuous, or a combination of both. However, operators in quantum
mechanics are generally unbounded with a continuous spectrum corresponding to non-normalizable
eigenfunctions, e.g. the position and momentum operator whose eigenfunctions are the Dirac-delta
function δ (q−qo) and the plane wave exp(ipq/h̄)/

√
2π h̄, respectively.

In order to deal with these non-square integrable functions that are outside the Hilbert space, one
can use Dirac’s bra-ket notation which is made mathematically rigorous by using the rigged Hilbert
space (RHS) that utilizes the theory of distributions40–44. In our case, we choose the fundamental
space of our RHS to be the space of infinitely continuously differentiable complex valued functions
with compact supports Φ such that the RHS is Φ ⊂ L2(R) ⊂ Φ×, where Φ× is the space of all
continuous linear functionals on Φ. The standard Hilbert space formulation of quantum mechanics
is recovered by taking the closures on Φ with respect to the metric of L2(R).

In coordinate representation, a quantum observable Â is a mapping from Φ to Φ×, and is given
by the formal integral operator

(Âϕ)(q) =
∫

∞

−∞

dq′
〈
q
∣∣Â∣∣q′〉ϕ(q′) (1)

where the kernel satisfies 〈q|Â|q′〉 = 〈q′|Â|q〉∗, to ensure Hermiticity such that the eigenvalues of
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Eq. (1) are real-valued. The integral Eq. (1) is interpreted in the distributional sense, i.e. it is
a functional on Φ wherein the kernel 〈q|Â|q′〉 is a distribution. As an example, the position and
momentum operators are now given as

(q̂ϕ)(q) =
∫

∞

−∞

dq′δ (q−q′)ϕ(q′) = qϕ(q) (2)

(p̂ϕ)(q) =
∫

∞

−∞

dq′ih̄
dδ (q−q′)

dq′
ϕ(q′) =−ih̄

dϕ(q)
dq

. (3)

There is still no consensus on how TOA-operators in the presence of an interaction potetial
are constructed40,45,46. One possible method is by canonical quantization but it has been deemed
not meaningful because the classical TOA can be multiple and/or complex-valued. Moreover,
canonical quantization suffers from ordering ambiguities, obstruction to quantization47,48, and
circularity when imposing the correspondence principle49,50. To overcome these problems, the
method of “supraquantization” was proposed for non-relativistic TOA-operators50, i.e., constructing
TOA-operators from first principles of quantum mechanics. It turns out that for linear systems,
V (q) = αq2 + βq+ γ , the “supraquantized” TOA-operator is equal to the canonically quantized
TOA-operator using Weyl-ordering. Meanwhile, the “supraquantized” TOA-operator for non-linear
systems can be expressed as a perturbation series wherein the leading term is the Weyl-ordered
TOA-operator40,50,51. This relation shows that canonical quantization is sufficient as a leading order
approximation of the canonical TOA-operator.

Now, the non-relativistic TOA-operators constructed by Galapon and Magadan40 quantized the
corresponding classical non-relativistic TOA

tx(q, p) =−sgn(p)

√
µo

2

∫ q

x
dq′
[

p2

2µo
+V (q)−V (q′)

]−1/2

(4)

in coordinate representation. The function sgn(p) is the sign of the initial momentum p which
accounts for the particles moving from the left or right. Meanwhile, x is the arrival point and µo is
the rest mass of the particle. The expression Eq. (4) was obtained by treating energy as a constant
of motion and inverting the corresponding Hamilton equation of motion. To quantize Eq. (4), it has
been argued40 that objections can be addressed on physical grounds. First, the TOA of a quantum
particle is always real-valued because it can tunnel to the classically forbidden region. Second, it is
only meaningful to quantize the first TOA because the wavefunction will collapse after a detector
registers the TOA of the quantum particle. The quantization of Eq. (4) was done by first expanding
around the free TOA40, i.e.,

t0(q, p) =−
∞

∑
j=0

(−1) j
µ

j+1
o

(2 j−1)!!
j!p2 j+1

∫ q

o
dq′
(
V (q)−V (q′)

) j
. (5)

It is then assumed that the potential is analytic at the origin wherein it admits the expansion V (q) =
∑n=0 νnqn such that ∫ q

o
dq′
(
V (q)−V (q′)

) j
=

∞

∑
n=1

a( j)
n qn. (6)

This then yields the local time of arrival (LTOA)

t0(q, p) =−
∞

∑
j=0

(−1) j
µ

j+1
o

(2 j−1)!!
j!

∞

∑
n=1

a( j)
n

qn

p2 j+1 , (7)

which is now amenable to quantization because it is single and real-valued in its region of
convergence in the phase space. Now, the LTOA converges absolutely and uniformly only in some
local neighborhood ω = ωq×ωp determined by |V (q)−V (q′)|< p2/2µo for p 6= 0 and continuous
V (q), and will diverge outside this region which signifies that the particle has not classically arrived
at q = 0, i.e. the classically forbidden region. However, the classical TOA Eq. (4) holds in the
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region Ω = Ωq×Ωp where ω ⊂ Ω. This means that Eq. (4) is the analytic continuation of the
LTOA in the region Ω\ω51.

The monomials qn p−m were then quantized by generalizing the Bender-Dunne basis operators52,53,

t̂−m,n =
∑

n
k=0 β

(n)
k q̂kp̂−mq̂n−k

∑
n
k=0 β

(n)
k

, (8)

where, the coefficients satisfy the condition β
(n)
k = β

(n)∗
n−k to ensure Hermiticity. Now, the most well-

studied54–59 ordering rules are Weyl, Born-Jordan, and simple-symmetric with each having its own
advantage . Specifically, Weyl ordering preserves the covariant property of Hamiltonian dynamics
with respect to linear canonical transforms57,60 while Born-Jordan preserves the equivalence of
the the Schrödinger and Heisenberg formulation of quantum mechanics57,61,62. On the other
hand, simple-symmetric ordering just provides the easiest possible ordering by using the “average
rule”54,63. These ordering rules are imposed on the basis operators t̂−m,n by choosing the coefficients

β
(n)
k =


n!

k!(n− k)!
, Weyl

1 , Born-Jordan
δk,0 +δk,n , simple-symmetric.

(9)

It easily follows that in coordinate representation, the non-relativistic TOA-operator admits the
expansion

(T̂0ϕ)(q) =−
∫

∞

−∞

dq′
∞

∑
j=0

(−1) j
µ

j+1
o

(2 j−1)!!
j!

∞

∑
n=1

a( j)
n
〈
q
∣∣̂t−2j−1,n∣∣q′〉ϕ(q′). (10)

wherein

〈
q
∣∣̂t−m,n

∣∣q′〉= i(−1)
1
2 (m−1)

2h̄m(m−1)!
Pn(q|q′)(q−q′)m−1sgn(q−q′), m = 1,2, . . . (11)

Pn(q|q′) =



(
q+q′

2

)n

, Weyl

1
n+1

(
qn+1−q′n+1

q−q′

)
, Born-Jordan

qn +q′n

2
, simple-symmetric.

(12)

The summation over n in Eq. (10) is then evaluated using the following identities

∞

∑
n=1

a( j)
n Pn(q|q′) =



∫ (q+q′)/2

0
ds
[
V
(

q+q′

2

)
−V (s)

] j

, Weyl

∫ q

0
du
∫ s

0
(V (s)−V (u)) j−

∫ q′

0
du
∫ s

0
(V (s)−V (u)) j , Born-Jordan

1
2

∫ q

0
ds(V (q)−V (s)) j +

1
2

∫ q′

0
ds(V (q)−V (s)) j , simple-symmetric,

(13)

which follows from the assumed analyticity of the potential at the origin Eq. (6). The resulting
expression is further evaluated by taking the summation over j.
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Performing these operations yield the non-relativistic TOA-operators of the form

(T̂0ϕ)(q) =
∫

∞

−∞

dq′
µo

ih̄
T0(q,q′)sgn(q−q′)ϕ(q′), (14)

where T (q,q′) is referred to as the time kernel factor (TKF) which depends on the ordering rule
used, i.e.,

T (W )
0 (q,q′) =

1
2

∫ q+q′
2

0
ds0F1

[
;1;

µo

2h̄2 (q−q′)2
{

V
(

q+q′

2

)
−V (s)

}]
(15)

T (BJ)
0 (q,q′) =

1
2(q−q′)

∫ q

0
ds
∫ s

0
du0F1

[
;1;

µo

2h̄2 (q−q′)2 {V (s)−V (u)}
]

− 1
2(q−q′)

∫ q′

0
ds
∫ s

0
du0F1

[
;1;

µo

2h̄2 (q−q′)2 {V (s)−V (u)}
]

(16)

T (SS)
0 (q,q′) =

1
4

∫ q

0
ds0F1

[
;1;

µo

2h̄2 (q−q′)2 {V (q)−V (s)}
]

+
1
4

∫ q′

0
ds0F1

[
;1;

µo

2h̄2 (q−q′)2{V (q′)−V (s)
}]

(17)

where 0F1(;a;z) is a specific hypergeometric function. The superscripts “W”, “BJ”, and “SS” refer
to the Weyl, Born-Jordan, and simple symmetric ordering, respectively.

III. NON-ANALYTIC QUANTIZATION OF THE RELATIVISTIC LTOA IN COORDINATE
REPRESENTATION

Supposing that the relation between the non-relativistic “supraquantized” and quantized TOA-
operators also holds for the relativistic case, it should be enough for now to consider the simplest
approach by developing the method of canonical quantization of relativistic TOA-operators, and
leave the method of “supraquantization” open for future studies. We follow the steps outlined in Sec.
II to construct the relativistic TOA-operator by quantizing the corresponding “classical” relativistic
time-of-arrival (CRTOA) obtained from inverting the equation of motion from the Hamiltonian of
special relativity64, i.e.,

tx(q, p) =− sgnp
∫ q

x

dq′

c

(
1− µ2

o c4

(H(q, p)−V (q′))2

)−1/2

(18)

wherein

H(q, p) =
√

p2c2 +µ2
o c4 +V (q) (19)

is the total energy of the positive energy solutions generated by the Klein-Gordon equation. Similar
to Eq. (4), the expression Eq. (18) was also obtained by treating energy as a constant of motion and
inverting the corresponding Hamilton equation of motion. Without loss of generality, we assume
the arrival point to be the origin x = 0 and impose that the potential is analytic at the origin such
that Eq. (18) has the expansion around the relativistic free TOA given by

t0(q, p) =−µo

∞

∑
j=0

j

∑
k=0

(
− 1

2
j

)(
j
k

)
(2µo)

j

(2µoc2) j−k

∞

∑
n=1

a(2 j−k)
n

γk+1
p

p2 j+1 qn (20)

where, γp =
√

1+ p2/µ2
o c2. For consistency with Sec. II, we shall also refer to Eq. (20) as the

relativistic LTOA since it is also single and real-valued within its region of convergence in the phase
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FIG. 1. Contours of integration for Eq. (25) for (a) q−q′ > 0 and (b) q−q′ < 0.

space. That is, Eq. (20) will only converge absolutely and uniformly in some local neighborhood
ω = ωq×ωp determined by |V (q)−V (q′)|>

√
p2c2 +µ2

o c4−µoc2 for p 6= 0 and continuous V (q).
Meanwhile Eq. (18) holds in the region Ω = Ωq×Ωp where ω ⊂Ω and is the analytic continuation
of the relativistic LTOA in the region Ω\ω .

The relativistic LTOA Eq. (20) is now amenable to quantization by promoting the position
and momentum (q, p) into operators (q̂, p̂). There is still no consensus on the existence of a
position operator in relativistic quantum mechanics65 but the most suitable candidate is the Newton-
Wigner position operator66. In our case, we will only use the non-relativistic position operator q̂ in
quantizing Eq. (20) which is motivated by Razavi’s relativistic free TOA operator67,68

T̂Ra =−
µo

2

(
q̂p̂−1

√
1+

p̂2

µ2
o c2 + p̂−1

√
1+

p̂2

µ2
o c2 q̂

)
. (21)

To quantize Eq. (20), we extend the Bender-Dunne basis operators52,53 to separable classical
function f (q, p) = g(q)nh(p)m, i.e.,

f (q, p)⇒ f̂q̂,p̂ =
∑

n
k=0 α

(n)
k ĝk

q̂ĥ
m
p̂ ĝ

n−k
q̂

∑
n
k=0 α

(n)
k

. (22)

where the coefficients α
(n)
k are given by Eq. (9). This now leads to the quantization

Q
[
qn p−2 j−1

γ
k+1
p

]
=



1
2n

n

∑
r=0

(n
r

)
q̂rp̂−2 j−1γ

k+1
p̂ q̂n−r , Weyl

1
n+1

n

∑
r=0

q̂rp̂−2 j−1γ
k+1
p̂ q̂n−r , Born-Jordan

1
2

(
q̂np̂−2 j−1γ

k+1
p̂ + p̂−2 j−1γ

k+1
p̂ q̂n

)
, simple-symmetric

(23)

It follows from Eq. (23) that in coordinate representation, the quantized relativistic TOA Eq. (20)
now has the expansion

(T̂cϕ)(q) =−µo

∞

∑
j=0

j

∑
k=0

(
− 1

2
j

)(
j
k

)
(2µo)

j

(2µoc2) j−k

×
∞

∑
n=1

a(2 j−k)
n

∫
∞

−∞

dq′P(Q)
n (q|q′)

〈
q
∣∣p̂−2 j−1

γ
k+1
p̂

∣∣q′〉ϕ(q′) (24)
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where, P(Q)
n (q|q′) is given by Eq. (12) and the superscript (Q) refers the to quantization rule used.

The momentum kernel 〈q|p̂−2 j−1γ
k+1
p̂ |q′〉 is evaluated by inserting the resolution of the identity

1=
∫

∞

−∞
d p |p〉〈p|, and using the plane wave expansion 〈q|p〉= eiqp/h̄/

√
2π h̄, i.e.,

〈
q
∣∣p̂−2 j−1

γ
k+1
p̂

∣∣q′〉=∫ ∞

−∞

d p
2π h̄

exp
[

i
h̄
(q−q′)p

]
1

p2 j+1

(√
1+

p2

µ2
o c2

)k+1

. (25)

The integral on the right hand side of Eq. (25) diverges because of the pole with order 2 j + 1 at
p = 0. Moreover, it has branch points at ±iµoc for even values of k. Now, this has already been
evaluated68 for the case when j = k = 0 and can be similarly evaluated as a distributional Fourier
transform using the contours shown in Fig. 1. The evaluation of Eq. (25) is done by taking its
complex extension and taking the average of the integrals

∫
Γ± dz f (z)z−2 j−1, where the paths γ+

(γ−) passes above (below) the pole at z = 0. Performing this integration assigns a value to Eq. (25)
which coincides with the Hadamard finite part69, and is explicitly given as〈

q
∣∣p̂−2 j−1

γ
k+1
p̂

∣∣q′〉=− 1
2ih̄

( f j,k(q,q′)+g j,k(q,q′))sgn(q−q′) (26)

where,

f j,k(q,q′) =
1

(2 j)!

(
i
h̄
(q−q′)

)2 j ∫ ∞

0
dye−y

∮
R

dz
2πi

1
z

√
1+

z2

µ2
o c2

k+1(
1− i

h̄
q−q′

y
z

)2 j

(27)

g j,k(q,q′) =
(−1) jik

(µoc)2 j

(
1− (−1)k+1

2

)
2
π

∫
∞

1
dyexp

[
−µoc

h̄

∣∣q−q′
∣∣y]√y2−1

k+1

y2 j+1 . (28)

The function f j,k(q,q′) is the contribution of the resiude z = 0 and is rewritten in integral form using
the residue theorem, wherein, the contour R is a circle in the complex plane with radius r < µoc.
Meanwhile, g j,k(q,q′) is the contribution of the branch cut which vanishes for odd values of k. Thus,
the relativistic TOA-operator Eq. (24) now has the expansion

(T̂cϕ)(q) =
∫

∞

−∞

dq′
µo

ih̄
T {Q}(q,q′)sgn(q−q′)ϕ(q′) (29)

where, T {Q}(q,q′) is the relativistic TKF and has the expansion

T {Q}(q,q′) =
1
2

∞

∑
j=0

j

∑
k=0

(
− 1

2
j

)(
j
k

)
(2µo)

j

(2µoc2) j−k ( f j,k(q,q′)+g j,k(q,q′))
∞

∑
n=1

a(2 j−k)
n P{Q}2 j−k(q|q

′).

(30)

An integral form factor for Eq. (30) is obtained by series rearrangement and using the identities in
Eq. (13).

Modified Weyl-ordered TOA operator

Performing the summation yields

T {W}(q,q′) =
1
2

∫ q+q′
2

0
dsWs(q,q′) (31)

where,

Ws(q,q′) =W
(1)
s (q,q′)+

2
π

∫
∞

1
dzexp

[
−µoc

h̄

∣∣q−q′
∣∣z]√z2−1

z
W

(2)
s,z (q,q′) (32)
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in which

W
(1)
s (q,q′) =

∫
∞

0
dye−y

∮
R

dz
2πi

1
z

√
1+

z2

µ2
o c2

× 0F1

[
;1;

µoV (W )
s (q,q′)
2h̄2

((
q−q′

)
− ih̄

y
z

)2

PW(s,z,q,q′)

]
(33)

W
(2)
s,z (q,q′) =

1
2

1− 1
z2

(
V (W )

s (q,q′)
µoc2

)2

+2i

√
z2−1
z2

(
V (W )

s (q,q′)
µoc2

)−1/2

+ fi→−i (34)

PW(s,z,q,q′) =

√1+
z2

µ2
o c2 +

V (W )
s (q,q′)
2µoc2

 (35)

V (W )
s (q,q′) =V

(
q+q′

2

)
−V (s). (36)

The factor 0F1(;a;z) in Eq. (33) is a specific hypergeometric function, and the contour R is a circle
of radius r < µoc that encloses the pole at z = 0, while fi→−i denotes changing i to −i of the first
term in Eq. (34). The TKF given by Eqs. (31)-(36) reduces to the known kernel for Weyl-quantized
non-relativistic TOA operator Eq. (15) in the limit c→ ∞. See Appendix A for details.

Modified Born-Jordan-ordered TOA-operator

Repeating the same steps yields

T {BJ}(q,q′) =
1

2(q−q′)

∫ q

0
ds
∫ s

0
duBs,u(q,q′)−

1
2(q−q′)

∫ q′

0
ds
∫ s

0
duBs,u(q,q′) (37)

where,

Bs,u(q,q′) = B
(1)
s,u (q,q′)+

2
π

∫
∞

1
dzexp

[
−µoc

h̄

∣∣q−q′
∣∣z]√z2−1

z
B
(2)
s,u,z(q,q′) (38)

in which

B
(1)
s,u (q,q′) =

∫
∞

0
dye−y

∮
R

dz
2πi

1
z

√
1+

z2

µ2
o c2

× 0F1

[
;1;

µoV (BJ)
s (u)
2h̄2

((
q−q′

)
− ih̄

y
z

)2

PBJ(s,u,z,q,q′)

]
(39)

B
(2)
s,u,z(q,q′) =

1
2

1− 1
z2

(
V (BJ)

s (u)
µoc2

)2

+2i

√
z2−1
z2

(
V (BJ)

s (u)
µoc2

)−1/2

+ fi→−i (40)

PBJ(s,u,z,q,q′) =

√1+
z2

µ2
o c2 +

V (BJ)(s,u)
2µoc2

 (41)

V (BJ)(s,u) =V (s)−V (u). (42)

The TKF given by Eqs. (37)-(42) also reduces to the known kernel for Born-Jordan quantized
non-relativistic TOA operator Eq. (16) in the limit c→ ∞.



Quantized relativistic TOA-operators for spin-0 particles and the quantum tunneling time problem 9

Modified simple-symmetric-ordered TOA-operator

Last, we have

T {SS}(q,q′) =
1
4

∫ q

0
dsS(s,q)+

1
4

∫ q′

0
dsS(s,q′) (43)

where

S(s,x) = S(1)(s,x)+
2
π

∫
∞

1
dzexp

[
−µoc

h̄

∣∣q−q′
∣∣z]√z2−1

z
S
(2)
z (s,x) (44)

in which

S(1)(s,x) =
∫

∞

0
dye−y

∮
R

dz
2πi

1
z

√
1+

z2

µ2
o c2

× 0F1

[
;1;

µoV (SS)(s,x)
2h̄2

((
q−q′

)
− ih̄

y
z

)2

PSS(s,z,x)

]
(45)

S
(2)
z (s,x) =

1
2

1− 1
z2

(
V (SS)(s,x)

µoc2

)2

+2i

√
z2−1
z2

(
V (SS)(s,x)

µoc2

)−1/2

+ fi→−i (46)

PSS(s,z,x) =

√1+
z2

µ2
o c2 +

V (SS)(s,x)
2µoc2

 (47)

V (SS)(s,x) =V (x)−V (s). (48)

The TKF given by Eqs. (43)-(48) also reduces to the known kernel for simple-symmetric quantized
non-relativistic TOA-operator Eq. (17) in the limit c→ ∞.

In general, a closed form expression for the relativistic TKFs T {W}(q,q′), T {BJ}(q,q′), and
T {SS}(q,q′) may be intractable because of how we assigned a finite value to the divergent integral
Eq. (26). It is possible that a tractable form may be obtained using a different assignment to the
divergent integral. However, we justify the use of T {W}(q,q′), T {BJ}(q,q′), and T {SS}(q,q′) because
it reduces to the non-relativistic time kernel40.

IV. BARRIER TRAVERSAL TIME OPERATOR

We use the measurement scheme shown in Fig. 2. Two detectors DT and DR are placed at the
arrival point q= 0 and in the far left, respectively. A square potential barrier of height V (q) =Vo > 0
and length L = a−b is then placed between the detectors a < q < b < 0. Next, a wavepacket ψ(q)
initially centered at q= qo with momentum po is placed between DR and the barrier such that the tail
of ψ(q) does not initially ‘leak’ into the barrier. The wavepacket is then launched at t = 0 towards
DT which records the arrival of the particle while the detector DR does not record any data. This
is done to avoid altering the propagation of ψ(q) and provide an indirect but accurately realistic
way of obtaining the TOA of the particle at the origin15,70,71. The same measurement scheme is
employed in the absence of the barrier.

The measurement is repeated several times for an ensemble of identically prepared particles to
obtain a TOA distribution at DT . We assume that the measured TOA distribution has an ideal
distribution generated by the spectral resolution of a corresponding TOA-operator T̂F and T̂B in
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FIG. 2. Measurement scheme for the traversal time of a particle in the (a) absence of a barrier, and (b) presence
of a barrier. The wavepacket ψo(q) is prepared between the detectors DR and DT such that its tails does not
extend to the barrier region.

the absence and presence of the potential barrier, respectively. In the succeeding expressions, the
subscript F (B) will indicate the case when the barrier is absent (present). The traversal time across
the barrier is then deduced from the difference of the average value of the measured TOA

∆τ̄ = τ̄F − τ̄B = 〈ψ|T̂F|ψ〉− 〈ψ|T̂B|ψ〉 (49)

and is assumed to be the expectation value of the TOA-operator.
In the absence of the barrier, the relativistic TKFs T {W}F (q,q′), T {BJ}

F (q,q′), and T {SS}
F (q,q′) is

obtained by substituting V (q) = 0 into Eqs. (31), (37) and (43), respectively. All ordering rules will
yield the same TKF

T̃F(η ,ζ ) =
η

2
TF(ζ ), (50)

where,

TF(ζ ) = 1+
2
π

∫
∞

1
dz

√
z2−1

z
exp
(
−µoc

h̄
|ζ |z
)
. (51)

The operator corresponding to the TKF T̃F(η ,ζ ) coincides with the Rigged Hilbert space extension
of Razavi’s relativistic free TOA-operator68

(T̂Raφ)(q) =
∫

∞

−∞

dq′
〈
q
∣∣T̂Ra

∣∣q′〉φ(q′) (52)

wherein, it was shown that the physical quantities associated with Eq. (52) are consistent with
special relativity. Now, the TKFs T {W}(q,q′), T {BJ}(q,q′), and T {SS}(q,q′) were derived under
the assumption that the interaction potential V (q) is analytic. However, it can still be applied to
piecewise potentials such as the square barrier because the TKFs are in integral form. We will
justify this assumption later by establishing that in the classical limit h̄→ 0, the operator for the
square potential barrier corresponding to the TKFs reduce to its “classical” relativistic TOA.

The TKF using the modified Wey ordering Eq. (31) may be obtained by mapping the potential
V (q) from (q,q′) coordinates into three non-overlapping regions in the (η ,ζ ) coordinate wherein
η = (q+ q′)/2 and ζ = q− q′. In this coordinate system, the arrival point is now at η = 0 and
V (η) = Vo for a < η < b < 0 and zero outside the interval (a,b). For Region I, it is easy to see
that V (η) = 0 for the entire integration region of Eq. (31). Meanwhile, for Region II, we now have
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V (η) =Vo and it is necessary to split the integral Eq. (31) into two parts as V (s) = 0 for b < s < 0
while V (s) =Vo for η < s < b. Last, for Region III we have V (η) = 0 and split the integral Eq. (31)
into three parts as V (s) = Vo for a < s < b while V (s) = 0 outside this interval. Performing these
operations will yield

T̃ (I)
B (η ,ζ ) =

η

2
TF(ζ )

T̃ (II)
B (η ,ζ ) =

(
η +b

2

)
TF(ζ )−

b
2
TB(Vo,ζ ) (53)

T̃ (III)
B (η ,ζ ) =

(
η +L

2

)
TF(ζ )−

L
2
TB(−Vo,ζ )

in which TF(ζ ) is given by Eq. (51) and

TB(Vo,ζ ) =FB(Vo,ζ )+
2
π

∫
∞

1
dzexp

[
−µoc

h̄
|ζ |z
]√z2−1

z
GB(Vo,z). (54)

FB(Vo,ζ ) =
∫

∞

0
dye−y

∮
R

dz
2πi

1
z

√
1+

z2

µ2
o c2 0F1

;1;
µoVo

2h̄2

(
ζ − ih̄

y
z

)2
√1+

z2

µ2
o c2 +

Vo

2µoc2


(55)

GB(Vo,z) =
1
2


[

1− 1
z2

(
Vo

µoc2

)2

+2i

√
z2−1
z2

(
Vo

µoc2

)]−1/2

+gi→−i

 . (56)

We now work in the original (q,q′)-coordinate of our system to evaluate the TKF T {BJ}(q,q′)
given by Eqs. (37)-(41) and later transform to the coordinates (η ,ζ ). For Region I, V (q) = 0 for the
entire integration region of Eq. (37). Meanwhile, for Region II, it is necessary to split the integral
over u of Eq. (37) into two parts as V (u) = 0 for b < u < 0 while V (u) = Vo for s < u < b while
V (s) = Vo over the whole region of s. We again repeat the same steps for Region III, and split the
integral over u of Eq. (37) into three parts as V (u) = Vo for a < u < b while V (u) = 0 outside this
interval. Then, V (s) = Vo over the whole region of s in Eq. (37). Performing these operations and
transforming into the coordinates (η ,ζ ) will yield the same TKFs as Eq. (53). Repeating the same
procedure will yield the the same TKFs T {SS}(q,q′). In the succeeding discussion, we shall only
refer to the modified Weyl-ordered operator since the same results will also hold for the Born-Jordan
and simple-symmetric case.

V. CLASSICAL LIMIT OF THE FREE AND BARRIER TKFS

We now prove that the TKFs corresponding to the TOA-operator for the free and barrier case are
indeed the quantization of the CRTOA by taking their inverse Weyl-Wigner transform

t̃(qo, po) =
µo

ih̄

∫
∞

−∞

dζ e−ipoζ/h̄T̃ (qo,ζ )sgn(ζ ) (57)

where, qo and po are the initial position and momentum, respectively. For the free case, this is done
by substituting Eq. (50) to Eq. (57) which yields

t̃F =
µo

ih̄
qo

2

∫
∞

−∞

dζ e−ipoζ/h̄sgn(ζ )+
µo

ih̄
qo

2
2
π

∫
∞

1
dz

√
z2−1

z

∫
∞

−∞

dζ exp
[
−µoc

h̄
|ζ |z
]
e−ipoζ/h̄sgn(ζ ).

(58)

The first term of Eq. (58) is evaluated by taking the inverse of the distributional Fourier transform72∫
∞

−∞

dxx−meiσx = im
π

(m−1)!
σ

m−1sgnσ . (59)
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Meanwhile, the order of integration for the second term of Eq. (58) are interchanged, and the inner
integral is evaluated as a Laplace transform. The resulting expression is further evaluated using the
integral identity68

∫
∞

1
dz

√
z2−1

z
a2

a2 +b2z2 =
π

2

−1+

√
1+

a2

b2

 . (60)

for all real (a,b), which can also be obtained using the calculus of residues. Thus, the classical limit
of the free TOA-operator corresponding to T̃F(η ,ζ ) is

t̃F =− µoqo

po

√
1+

p2
o

µ2
o c2 , (61)

which is the known free CRTOA obtained from directly integrating Eq.(18).
In the presence of the potential barrier, it easily follows from Eq. (61) that the classical limit of

the TKF for Region I T̃ (I)
B (η ,ζ ) is t̃(I)B = t̃F . For Region II, the Weyl-Wigner transform of the TKF

T̃ (II)
B (η ,ζ ) is

t̃(II)
B =− µo(qo +b)

p

√
1+

p2
o

µ2
o c2 −

b
2

µo

ih̄

∫
∞

−∞

dζ e−ipoζ/h̄TB(Vo,ζ )sgn(ζ ), (62)

wherein∫
∞

−∞

dζ e−ipoζ/h̄TB(Vo,ζ )sgn(ζ )

=
∫

∞

−∞

dζ e−ipoζ/h̄FB(Vo,ζ )sgn(ζ )+
(

2h̄
ipo

)
2
π

∫
∞

1
dzGB(Vo,z)

√
z2−1

z
p2

o

p2
o +µ2

o c2z2 . (63)

The first term of Eq. (63) is evaluated by expanding the hypergeometric function in FB(Vo,ζ ) using
its power series representation to perform a term-by-term integration. The resulting series converges
as long the initial energy of the particle is above the barrier height, i.e.∫

∞

−∞

dζ e−ipoζ/h̄FB(Vo,ζ )sgn(ζ )

=
2h̄
ipo

∞

∑
j=0

(2 j)!
j! j!

(
−µoVo

2h̄2

) j j

∑
k=0

(
j
k

)(
Vo

2µoc2

) j−k

×


√

1+
p2

o

µ2
o c2

k+1

−
(

p2
o

µ2
o c2

) j+1( k+1
2

j+1

)
2F1

[
1,

1
2
+ j− k

2
; j+2;− p2

o

µ2
o c2

]
=

(
2h̄
ipo

)√
1+

p2
o

µ2
o c2

1+
2µoVo

p2
o

√1+
p2

o

µ2
o c2 +

Vo

2µoc2

−1/2

−
(

2h̄
ipo

)
2
π

∫
∞

1
dzGB(Vo,z)

√
z2−1

z
p2

o

p2
o +µ2

o c2z2 (64)

The second line follows from using the integral representation of the Gauss hypergeometric function

2F1(α,β ;γ;z) =
Γ(γ)

Γ(β )Γ(γ−β )

∫
∞

0
dt

tc−b−1(1+ t)a−c

(t +1− z)a (65)
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for Re[γ]> Re[β ]> 0 and |Arg(1− z)|< π . Combining Eqs. (62)-(64) thus yields

t̃(II)
B =− µo(qo +b)

po

√
1+

p2
o

µ2
o c2 +

b
c

√√√√√√√√√
1+

p2
o

µ2
o c2(√

1+
p2

o

µ2
o c2 +

Vo

µoc2

)2

−1

. (66)

The first term of t̃(II)
B is the free CRTOA from the edge of the barrier to the origin while the second

term is the traversal time on top of the barrier. Repeating the same steps, the Weyl-Wigner transform
of T̃ (III)

B (η ,ζ ) is

t̃(III)
B =− µo(qo +L)

po

√
1+

p2
o

µ2
o c2 +

L
c

√√√√√√√√√
1+

p2
o

µ2
o c2(√

1+
p2

o

µ2
o c2 −

Vo

µoc2

)2

−1

. (67)

The first term of t̃(III)
B is the traversal time across the interaction free region while the second term is

the traversal time across the barrier region. The Weyl-Wigner transforms t̃(II)
B and t̃(III)

B also coincide
with CRTOA obtained from directly integrating Eq. (18).

In general, the classical limit of the TKF for a given quantization scheme is obtained by

t̃(qo, po) = lim
h̄→0

µo

ih̄

∫
∞

−∞

dζ e−ipoζ/h̄T̃ {Q}(qo,ζ )sgn(ζ ), (68)

wherein the integral is understood in a distributional sense, provided that the limit exists40. Notice
that the Weyl-Wigner transform Eq. (57) does not involve the vanishing of h̄. Now, Eq. (68)
implies that the classical limit of the TKF for a given quantization scheme is, in general, dependent
on positive powers of h̄. Such is the case for the Born-Jordan and simple-symmetric ordering.
Performing the limit h̄→ 0 then reduces to classical limits of the TKFs T {BJ}(q,q′) and T {SS}(q,q′)
into that equal to the Weyl-Wigner transform of T {W}(q,q′).

VI. EXPECTED BARRIER TRAVERSAL TIME

We now assume that the average value of the measured TOA τ̄ at the detector DT (see Fig. 2) is
equal to the expectation value of the operator T̂, i.e.

τ̄ =〈ψ|T̂|ψ〉=
∫

∞

−∞

dqψ
∗(q)

∫
∞

−∞

dq′
µo

ih̄
T (q,q′)sgn(q−q′)ψ(q′). (69)

The incident wavefunction is assumed to be prepared in a pure state ψ(q) = ϕ(q)eikoq with
momentum expectation value po = h̄ko, where 〈ϕ|p̂|ϕ〉 = 0. We further assume that ϕ(q) is
infinitely differentiable and impose the condition that the support of ϕ(q) is in Region III such that
the tail of ϕ(q) does not ’leak’ into the barrier. To evaluate Eq. (69), it will be convenient to perform
a change of variables from (q,q′) to (η ,ζ ) such that τ̄ = Im(τ̄∗) wherein τ̄∗ is the complex-valued
TOA given by

τ̄
∗ =−2µo

h̄

∫
∞

−∞

dη

∫
∞

0
dζ eikoζ T̃ (η ,ζ )ϕ∗

(
η− ζ

2

)
ϕ

(
η +

ζ

2

)
. (70)

In the succeeding expressions, we indicate complex-valued quantities with an asterisk ∗ wherein the
imaginary component corresponds to the physical quantity.
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In the absence of the barrier, it easily follows from Eqs. (50) and (70) that the complex-valued
free TOA is

τ̄
∗
F =−µo

h̄

∫
∞

0
dζ eikoζ TF(ζ )

∫
∞

−∞

dηηϕ
∗
(

η− ζ

2

)
ϕ

(
η +

ζ

2

)
. (71)

Meanwhile, in the presence of the barrier, we have

τ̄
∗
B =− µo

h̄

∫
∞

0
dζ eikoζ

∫
∞

−∞

dη T̃ (III)
B (η ,ζ )ϕ∗

(
η− ζ

2

)
ϕ

(
η +

ζ

2

)
=τ̄
∗
F −

µoL
h̄

∫
∞

0
dζ eikoζ (TF(ζ )−TB(−V0,ζ ))

∫
∞

−∞

dηϕ
∗
(

η− ζ

2

)
ϕ

(
η +

ζ

2

)
. (72)

The measurable quantity for deducing the barrier traversal time is the TOA difference between the
free and barrier case ∆τ̄ = Im(∆τ̄∗) = Im(τ̄∗F − τ̄∗B), which is explicitly given as

∆τ̄
∗ =

µoL
po

(Q∗c−R∗c) (73)

wherein

Q∗c =ko

∫
∞

0
dζ eikoζTF(ζ )Φ(ζ ) (74)

R∗c =ko

∫
∞

0
dζ eikoζTB(−V0,ζ )Φ(ζ ) (75)

Φ(ζ ) =
∫

∞

−∞

dηϕ
∗
(

η− ζ

2

)
ϕ

(
η +

ζ

2

)
. (76)

The complex-valued dimensionless quantities Q∗c and R∗c accounts for the contribution of the barrier
and relativistic effects on the non-relativistic free TOA µoL/po. The physical content of the
quantities Qc and Rc are investigated by taking the asymptotic expansion in the high energy limit
ko→ ∞.

It is easy to see that if we substitute Eq. (51) to Eq. (74), then it follows that the quantity
(µoL/po)Qc is just the expectation value of the free relativistic TOA-operator calculated by Flores
and Galapon73. Thus,

Qc ∼

√
1+

p2
o

µ2
o c2 . (77)

which is the relativistic correction to the non-relativistic free TOA µoL/po. Now, the quantity R∗c
is a Fourier integral with respect to the asymptotic parameter ko. We use the same steps outlined
in Sec. IV for the calculation of the Weyl-Wigner transform of the TKF T̃ (III)

B (η ,ζ ), and perform
repeated integration-by-parts to collect powers of h̄. Taking the imaginary part of R∗c thus yields

Im[R∗c ]∼
∞

∑
m=0

Φ
(2m)(0)

(−1)mh̄2m

p2m
o

∞

∑
j=0

(2 j)!
(1) j j!

(
µoVo

2p2
o

) j j

∑
k=0

(
j
k

){(
− Vo

2µoc2

) j−k

×
j

∑
l=0

( k+1
2
l

)(
2m+2 j−2l

2 j−2l

)(
p2

o

µ2
o c2

)l
}
+

2
π

∫
∞

1
dz

(
p2

o
µ2

o c2

)
z2 +

(
p2

o
µ2

o c2

)√z2−1
z

G(Vo,z) (78)

∼
∞

∑
j=0

(2 j)!
(1) j j!

(
µoVo

2p2
o

) j j

∑
k=0

(
j
k

)(
− Vo

2µoc2

) j−k

√

1+
p2

o

µ2
o c2

k+1

−
(

p2
o

µ2
o c2

) j+1( k+1
2

j+1

)
2F1

[
1,

1
2
+ j− k

2
; j+2;− p2

o

µ2
o c2

]}



Quantized relativistic TOA-operators for spin-0 particles and the quantum tunneling time problem 15

+
2
π

∫
∞

1
dz

(
p2

o
µ2

o c2

)
z2 +

(
p2

o
µ2

o c2

)√z2−1
z

G(Vo,z) (79)

The second line Eq. (79) follows from the classical limit h̄→ 0 in which only the terms with m = 0
will not vanish, wherein we used the normalization conditions Φ(0) = 1. The integral representation
of the Gauss hypergeometric function, Eq. (65), is again used to perform the summation which
yields

Rc ∼
po

µoc

√
E2

p

(Ep−Vo)2−µ2
o c4 (80)

where Ep =
√

p2c2 +µ2
o c4. Thus, Rc is just the ratio of the energy of the incident particle and its

energy above the barrier. This leads us to the interpretation that Rc is the effective index of refraction
(IOR) of the barrier with respect to the wavepacket. The same interpretation was made in the non-
relativistic case for the square potential barrier and well15,74. This implies that the traversal time
across the barrier is given by τ̄trav = (µoL/po)Rc.

We now establish the expected traversal time across the potential barrier and use the same
notations as that of Galapon15 for consistency. To evaluate the complex-valued IOR Eq. (75), we
introduce the inverse Fourier transform of the wavepacket ϕ(q) = (2π)−1 ∫ ∞

−∞
dk̃eik̃qφ(k̃) such that

Φ(ζ ) =
∫

∞

−∞

dk̃|φ(k̃)|2eik̃ζ . (81)

Substituting Eq. (81) to Eq. (75), and performing a change of variable k̃ = k− ko yields

R∗c
ko

=
∫

∞

0
dζTB(−V0,ζ )

∫
∞

−∞

dk|φ(k− ko)|2eikζ (82)

FIG. 3. Contour of integration for Eq. (86) leading to the interchange of the order of integration in Eq. (87)

FIG. 4. Contours of integration of Eq. (90) for the (a) the first integral when Vo/h̄c < µoc/h̄, and (b) the second
integral
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TABLE I. Numerical verification of R̃c for spatially narrow Gaussian wavepackets σ = 0.5 when there are
above and below barrier components

Integral: Eq. (75) Summation: Eq. (100) Evaluated: Eq. (94)
ko = 2.00;Vo = 0.2 1.32442 1.32442 1.32442
ko = 2.00;Vo = 0.3 1.38141 1.38141 1.38141
ko = 2.00;Vo = 0.5 — 1.48255 1.48255
ko = 2.00;Vo = 0.6 — 1.52350 1.52350
ko = 0.90;Vo = 0.3 0.99882 0.99888 0.99888
ko = 3.00;Vo = 0.3 1.24812 1.24812 1.24811
ko = 5.00;Vo = 0.3 1.09394 1.09394 1.09393
ko = 0.15;Vo = 0.3 0.18996 0.18996 0.18996
ko = 0.20;Vo = 0.3 0.25253 0.25253 0.25253
ko = 0.25;Vo = 0.3 0.31446 0.31446 0.31446

TABLE II. Numerical verification of R̃c for spatially wide Gaussian wavepackets σ = 9.0 and Vo = 0.3 when
there are only below barrier components

Integral: Eq. (75) Evaluated: Eq. (94)

ko = 0.19 2.23294×10−16 1.34410×10−29

ko = 0.25 1.77061×10−14 2.01917×10−24

ko = 0.28 1.84479×10−16 5.06286×10−22

Notice that φ(k− ko) is the Fourier transform of the full incident wavefunction ψ(q) = eikoqϕ(q),
i.e.

φ(k− ko) = ψ̃(k) =
1√
2π

∫
∞

−∞

dqe−ikq
ψ(q) (83)

Thus, we have

R∗c
ko

=
∫

∞

0
dζTB(−V0,ζ )

∫
∞

−∞

dkeikζ |ψ̃(k)|2 (84)

=
∫

∞

0
dζFB(−V0,ζ )

∫
∞

−∞

dkeikζ |ψ̃(k)|2 + 2
π

∫
∞

1
dy

√
y2−1
y

GB(Vo,y)
∫

∞

−∞

dk
µoc
h̄ y

k2 + µ2
o c2

h̄2 y2
|ψ̃(k)|2.

(85)

The last line follows from interchanging the order of integration in the second term of Eq. (85) but
the same cannot be done on the first term. Specifically, if we use the same steps outlined in Sec. IV to
perform a term-by-term integration on the first term of Eq. (85), then this will lead to an infinite sum
of divergent integrals whose values may be assigned using analytic continuation, regularization, and
many others. However, it was recently shown by one of us that this naive interchange in the ordering
of integrals leading to divergent integrals sometimes miss significant terms75,76. This was shown to
have physical significance in the traversal time of a non-relativistic particle across a potential well74.

To make the the interchange in the orders of integration on the the first term of Eq. (85) valid,
we use the methods of Pablico and Galapon74 and use the contour shown in Fig. 3. We let p(z) =
|ψ̃(z)|2 and assume that ψ̃(z) does not have any poles in the complex plane, i.e.∫

∞

−∞

eixζ p(x) =
∫

∞

−∞

dxe−(ε−ix)ζ p(x+ iε). (86)

This now makes∫
∞

0
dζFB(−V0,ζ )

∫
∞

−∞

dkeikζ |ψ̃(k)|2 =
∫

∞

−∞

dkp(k+ iε)
∫

∞

0
dζFB(−Vo,ζ )e−(ε−ik)ζ . (87)
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The interchange is valid provided that ε > k. We can now use the series representation of the
hypergeometric function in FB(−Vo,ζ ) and use the same methods outlined in Sec. IV. This turns
the first term of Eq. (85) into∫

∞

0
dζFB(−V0,ζ )

∫
∞

−∞

dkeikζ |ψ̃(k)|2

= i
∞

∑
n=0

(2n)!
(1)nn!

(
µoVo

2h̄2

)n ∫ ∞

−∞

dkp(k+ iε)csgn(k+ iε)

×

√1+
h̄2(k+ iε)2

µ2
o c2

n+1(
(k+ iε)2 +

V 2
o

h̄2c2

)−n− 1
2

−2i
π

∫
∞

1
dy

√
y2−1
y

GB(Vo,y)
∫

∞

−∞

dkp(k+ iε)
h̄2

µ2c2 (k+ iε)

y2 + h̄2

µ2c2 (k+ iε)2
(88)

where csgn(z) is the complex signum function

csgn(z) =


1 ,Re(z)> 0
−1 ,Re(z)< 0
sgn(Im(z)) ,Re(z) = 0.

(89)

To understand the physical content of Eq. (88), we consider the following integral in the complex
plane,

∮
dzp(z)

√1+
h̄2z2

µ2
o c2

n+1(
z2 +

V 2
o

h̄2c2

)−n− 1
2

and
∮

dzp(z)
h̄2

µ2c2 z

y2 + h̄2

µ2c2 z2
, (90)

wherein the first integral has four branch points at z = {±i µoc
h̄ ,±iVo

h̄c} while the second integral has
poles at z = ±i µc

h̄ . We assume that the branch points satisfy Vo/h̄c < µoc/h̄ which is equivalent to
the condition Vo < µoc2. The integrals Eq. (90) are then evaluated using the contours in Fig. 4 (see
Appendix B for details) and the resulting expressions are substituted to Eq. (85) which yields

R∗c =i
h̄ko

µc

∫
∞

0
dk
(
|ψ̃(k)|2−|ψ̃(−k)|2

)√ Ẽ2
k

(Ẽk−Vo)2−µ2
o c4

+ ko
2
π

∫
∞

1
dy

√
y2−1
y

GB(Vo,y)
∫

∞

−∞

dk|ψ̃(k)|2
µc
h̄ y

k2 + µ2c2

h̄2 y2
(91)

in which, Ẽk =
√

h̄2k2c2 +µ2
o c4. It is easy to see that the first term of Eq. (91) is generally complex-

valued while the second term is always real-valued. Thus, taking the imaginary component of the
IOR yields

Im[R∗c ] =
h̄ko

µoc
R̃c =

h̄ko

µoc
Re


∫

∞

0
dk
(
|ψ̃(k)|2−|ψ̃(−k)|2

)√ Ẽ2
k

(Ẽk−Vo)2−µ2
o c4

 (92)

The right-hand side of Eq. (92) is only real-valued when |k|> κc, where

κc =

√
2µoVo

h̄2

(
1+

Vo

2µoc2

)
(93)
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FIG. 5. Momentum density distribution |ψ̃(k)|2 of spatially wide Gaussian wavepackets for the parameters
µo = c = h̄ = 1 with ko = 1.3. The red line represents κc = 1.7025 with Vo = 0.99.

provided that Vo < µoc2. Thus, Eq. (92) becomes

R̃c = R̃(+)
c − R̃(−)

c =
∫

∞

κc

dk|ψ̃(+k)|2
√

Ẽ2
k

(Ẽk−Vo)2−µ2
o c4 −

∫
∞

κc

dk|ψ̃(−k)|2
√

Ẽ2
k

(Ẽk−Vo)2−µ2
o c4

(94)
It easily follows that the barrier traversal time now has the form

τ̄trav =
µoL
po

Im[R∗c ] = tcR̃c, (95)

where, tc = L/c is the time it takes a photon to traverse the barrier length. The term R̃(+)
c (R̃(−)

c )
characterizes the contribution of the positive (negative) components of the energy distribution of
ψ̃(k) with |k|> κc to the effective IOR R̃c. Clearly, the quantity

τ̄
(±)
trav = tcR̃(±)

c =
∫

∞

κc

dkτ̄top(k)|ψ̃(±k)|2 (96)

is the weighted average of the classical above barrier traversal time

τ̄top(k) = tc

√
Ẽ2

k

(Ẽk−Vo)2−µ2
o c4 (97)

with weights |ψ̃(±k)|2. The effective IOR Eq. (94) shows that the contribution of the below barrier
energy components of ψ̃(k) with |k|< κc vanishes, which leads us to the same conclusion as that of
Galapon15. That is, the below barrier energy components of ψ̃(k) are transmitted instantaneously
which implies that tunneling, whenever it occurs, is instantaneous.

Thus, the instantaneous tunneling time predicted in Ref.15 is not a mere consequence of using a
non-relativistic theory but is an inherent quantum effect in the context of “arrival times” as it still
manifests even with a relativistic treatment. However, there is a specific configuration in a tunneling
experiment such that this instantaneous tunneling time can be observed. Specifically, it is implied
from Eq. (94) that the initial incident wavepacket ψ(q) must be sufficiently spatially wide so that
the spread in momentum is narrow. This will ensure that ψ̃(k) only has below barrier components.
Additionally, Eq. (94) rests on the assumption that ψ(q) does not initially ‘leak’ inside the barrier
region, as such, the initial incident wavepacket must be placed very far from the barrier.
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VII. BARRIER TRAVERSAL TIME OF GAUSSIAN WAVEPACKETS

We consider an incident Gaussian wavepacket , i.e.

ϕ(q) =
1√

σ
√

2π

exp
[
− (q−qo)

2

4σ2

]
. (98)

that is initially centered at q = qo with a position variance σ2. In momentum representation, this
leads to

|ψ̃(±k)|2 =

√
2σ2

π
exp
[
−2σ

2(k∓ ko)
2]. (99)

For completeness, we first numerically verify the equivalence of Eqs. (94) and Eq. (75). However,
Eq. (75) is numerically taxing and unstable as the potential Vo increases, such that TB(−Vo,ζ ) must
be represented in an equivalent expression. This is done by using the power series representation of
the hypergeometric function in Eq. (55) to perform a term-by-term integration which yields

TB(−Vo,ζ ) =
∞

∑
l=0

(2l)!
l!l!

(
−µoVo

2h̄2

)l l

∑
m=0

(
l
m

)(
−Vo

2µoc2

)l−m l

∑
n=0

(m+1
2
n

)(
−h̄2

µ2
o c2

)n
ζ 2l−2n

(2l−2n)!

+
2
π

∫
∞

1
dzexp

[
−µoc

h̄
|ζ |z
]√z2−1

z
GB(Vo,z) (100)

Eq. (100) is then substituted to Eq. (75). This series will converge as long as the initial energy of
the particle is above the barrier height for Vo < µoc2. text

The equivalent expressions for the effective IOR given by Eqs. (75), (94), and (100) were
numerically evaluated using Wolfram Mathematica 12 - Student edition. The computer used has
the following specifications: an Intel Core i5-9300H CPU @ 2.40 GHz, 8.0 GB Ram, and a 64-bit
operating system × 64-based processor. Table I compares the values of R̃c for spatially narrow
Gaussian wavepackets, i.e. the wavepackets have a wide spread in momentum such that it can have
both below and above barrier components. The evaluation of Eq. (75) is numerically taxing for
the computer as the potential increases but the equivalent expression Eq. (100) converges to the
same value as that of Eq. (94). Moreover, it can be seen that for the parameters wherein Eq. (75)
is evaluated, the equivalent expressions Eq. (100) and (94) all converge to the same value. Table
II compares the values of R̃c for spatially wide Gaussian wavepackets, i.e. the wavepackets have
a narrow spread in momentum such that it only has below barrier components. Eq. (100) will
not converge so we only compare Eqs. (75) and (94). It can be seen that the the values become
numerically zero, which supports our earlier conclusion. This gives us confidence in the final
expression of the barrier traversal time Eq. (95).

To further appreciate the importance of distinguishing the below and above barrier components,
consider Fig. 5. The components on the right (left) of the red line κc are the above (below) barrier
components. It can easily be seen from Fig. 5 that all the components of |ψ̃(k)|2 for the cases
σ = 4.0 and σ = 6.0 are below κc which will tunnel instantaneously through the barrier Vo = 0.99.
This is easily verified by evaluating Eq. (94) for these parameters, which will yield R̃c ∼ 0. Fig.
6 shows the effective IOR R̃c for spatially wide Gaussian wavepackets as the initial momentum ko
increases. It can be seen that there is a region where the traversal time τ̄trav becomes superluminal as
ko increases such that the spread of |ψ̃(k)|2 starts to go beyond κc. This is shown in Fig. 7. We can
thus estimate that if the initial momentum ko < κc−σk, where σk is the momentum variance, then
the traversal time becomes superluminal because

∫
∞

κc
dk|ψ̃(k)|2 is small which effectively leads to

R̃c < 1 or equivalently τ̄trav < tc. Moreover, the traversal time becomes subliminal when the initial
momentum ko > κc−σk, wherein the peak of R̃c is roughly at ko = κc +σk. The effective IOR R̃c
then eventually plateaus to some value as all the components of |ψ̃(k)|2 are above κc.
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FIG. 6. The effective IOR R̃c of spatially wide Gaussian wavepackets for the parameters µo = c = h̄ = 1
with σ = 6. The red line represents κc = 1.7025 with Vo = 0.99. The area below the blue line represents the
superluminal region for the traversal time when R̃c < 1.

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
◦◦◦
◦◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦◦◦◦◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦△△△△△△△△△△△△△△△△△△△△△△△

△△△
△△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△△△△△

△
△
△
△
△
△
△
△
△
△
△
△
△
△
△△△△△△△△△△△△△△△△△△△△△△△△△△△△△▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯

▯▯▯
▯▯
▯
▯
▯
▯
▯
▯
▯
▯
▯
▯
▯
▯
▯
▯
▯
▯▯▯▯▯

▯
▯
▯
▯
▯
▯
▯
▯
▯
▯
▯
▯
▯
▯
▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯

◦ ko=1.50 [a.u.]

△ ko=1.55 [a.u.]

▯ ko=1.60 [a.u.]

1.2 1.4 1.6 1.8 2.0
k [a.u.]

1

2

3

4

5
|ψ(k) 2

FIG. 7. Momentum density distribution |ψ̃(k)|2 for the parameters µo = c = h̄ = 1 with σ = 6. The red line
represents κc = 1.7025 with Vo = 0.99.

VIII. CONCLUSION

In this paper, we have given a full account of [EPL, 141 (2023) 10001]. The general form
of the quantized relativistic TOA-operators in the presence of an interaction potential were also
obtained using a modified Weyl, Born-Jordan, and simple symmetric ordering rule. These were
then used to investigate the traversal time of a relativistic quantum particle across a square barrier.
We have shown that tunneling is still instantaneous for the three ordering rules despite a relativistic
treatment of time as a dynamical observable, provided that the barrier height is less than the rest
mass energy. This result is similar to the earlier work of Galapon15 for a non-relativistic particle.
That is, tunneling is instantaneous and that only the above barrier energy components of the initial
wavepacket’s momentum distribution contribute to the barrier traversal time.

The results of this paper implies that instantaneous tunneling time, or generally superluminal
tunneling times, across a square barrier is not a consequence of using a non-relativistic theory but
is an inherent quantum effect in the context of arrival times. However, this instantaneous tunneling
can only be observed if the following conditions are satisfied: (i) the initial incident wavepacket
ψ(q) must be spatially wide to ensure that all the momentum components are below the barrier; and
(ii) the initial incident wavepacket must be placed very far from the barrier to prevent any ‘leaking’
into the barrier.

It remains to be explored the case when Vo > µoc2, which can be done by modifying the contour
in Fig. 4. By doing so, it is expected that one should be able to extract a non-zero value for the

https://iopscience.iop.org/article/10.1209/0295-5075/acad9a/meta
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below-barrier contributions to the effective IOR of the barrier. The caveat is that the effects of
spontaneous pair creation and annihilation may be significant in this regime such that the concept
of TOA loses its meaning. That is, the particle that arrived may not be the same initial particle that
tunneled through the barrier such that the concept of TOA-becomes ill-defined.

It should then be enough to use a non-relativistic theory and investigate the effects of the shape
of the barrier to the measured tunneling times. It is well-known that non-linear systems such as the
square barrier suffers from obstructions to quantization50. In the non-relativistic case, the correction
terms to the TKF for non-linear systems, such as the square barrier, has been recently obtained51.
Applying these correction terms to the non-relativistic case may lead to non-zero tunneling times.

We leave the problem for spin-1/2 particles open for future studies. Earlier studies done by Bunao
and Galapon77,78, where the TOA-operators were obtained by solving the time-energy canonical
commutation relation, have shown that T̂S−1/2 = T̂S−0+T̂E in which, T̂S−1/2 and T̂S−0 are the free-
particle TOA-operator for spin-1/2 and spin-0 particles, respectively. Meanwhile, T̂E is an extra
term which is not invariant under parity transforms, and commutes with the Dirac-Hamiltonian.
The term T̂E was then thrown away because it does not contribute anything to the conjugacy
relation implying T̂S−1/2 = T̂S−0, but T̂E may provide for other characteristics, roles, and physical
interpretations of a time observable79. We expect the same behavior when extending the formalism
to spin-1/2 particles, i.e., there will be an extra term to the barrier traversal time operator for
spin-1/2 particles. However, the quantization prescription does not impose conjugacy between
the Hamiltonian and TOA-operators, as such, it is possible that this extra term cannot be simply
thrown away and may lead to non-zero tunneling times.

ACKNOWLEDGMENTS

P.C.M. Flores would like to thank D.A.L. Pablico and C.D. Tica for fruitful discussions regarding
the evaluation of the divergent integrals in term-by-term integration. P.C.M. Flores acknowledges
the support of the Department of Science and Technology – Science Education Institute through the
ASTHRDP-NSC graduate scholarship program.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Appendix A: Non-relativistic limit of the time kernel factors

For completeness, we show how the relativistic TKFs in Sec. III reduces to the known TKFs
of the non-relativistic TOA operator constructed by Galapon and Magadan40. We first evaluate the
modified Weyl-ordered relativistic TKF operator as follows

lim
c→∞

T {W}(q,q′)

=
1
2

∫ q+q′
2

0
ds lim

c→∞
Ws(q,q′)

=
1
2

∫ q+q′
2

0
ds lim

c→∞

{
W

(1)
s (q,q′)+

2
π

∫
∞

1
dzexp

[
−µoc

h̄

∣∣q−q′
∣∣z]√z2−1

z
W

(2)
s,z (q,q′)

}
(A1)

It can easily be seen that the second term of Eq. (A1) vanishes exponentially. Meanwhile, the first
term of Eq. (A1) reduces into

lim
c→∞

W
(1)
s (q,q′)
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=
∫

∞

0
dye−y

∮
R

dz
2πi

1
z

lim
c→∞

√
1+

z2

µ2
o c2 0F1

[
;1;

µoV (W )
s (q,q′)
2h̄2

((
q−q′

)
− ih̄

y
z

)2

PW(s,z,q,q′)

]

=
∫

∞

0
dye−y

∮
R

dz
2πi

1
z 0F1

[
;1;

µoV (W )
s (q,q′)
2h̄2

((
q−q′

)
− ih̄

y
z

)2
]
. (A2)

The right-hand side of Eq. (A2) is further evaluated by taking the series representation of the
hypergeometric function to perform a term-by-term integration, i.e.,

lim
c→∞

W
(1)
s (q,q′)

=
∞

∑
m=0

1
(1)mm!

(
µV (W )

s (q,q′)
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)m 2m

∑
n=0

(
2m
n

)
(q−q′)2m−n (−ih̄)n

∫
∞

0
dye−yyn

∮
R

dz
2πi

1
zn+1

=
∞

∑
m=0

1
(1)mm!

(
µV (W )

s (q,q′)
2h̄2 (q−q′)2

)m

=0F1

[
;1;

µV (W )
s (q,q′)

2h̄2 (q−q′)2

]
(A3)

Thus, we now have the non-relativistic limit of the Weyl-ordered TKF given by

lim
c→∞

T {W}(q,q′) =
1
2

∫ q+q′
2

0
ds0F1

[
;1;

µV (W )
s (q,q′)

2h̄2 (q−q′)2

]
(A4)

The same process is applied to obtain the non-relativistic limit of the Born-Jordan and simple-
symmetric ordered TKFs.

Appendix B: Further details on the evaluation of the complex-valued IOR R∗c

Here, we provide the details on the evaluation of the contour integrals Eq. (90). Let us first
consider the following integral

∮
dzp(z)

√1+
h̄2z2

µ2
o c2

n+1(
z2 +

V 2
o

h̄2c2

)−n− 1
2

, (B1)

which is separately evaluated using the left and right box contours in Fig. 4(a). It is straightforward
to show that the integral Eq. (B1) will vanish along the paths z = ±r + iy since p(z) = |ψ̃(z)|2
vanishes as r→ ∞. Moreover, Eq. (B1) also vanish along the semicircular paths around the branch
points z = δeiθ + i(µoc/h̄) and z = δeiθ + i(Vo/h̄c) as δ → 0. Taking the difference of the non-
vanishing terms of the right and left box contours will then yield

∫
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−∞
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n
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We can similarly evaluate the integral

∮
dzp(z)

h̄2

µ2c2 z

y2 + h̄2

µ2c2 z2
(B3)

using the contour in Fig. 4(b). It is also straightforward to show that the integral Eq. (B3) will vanish
along the paths z = ±r+ iy since p(z) = |ψ̃(z)|2 vanishes as r→ ∞. Using the residue theorem, it
is easy to show that

∫
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−∞
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y
)

(B4)

We then substitute both Eqs. (B2) and (B4) into Eq. (88) which yields∫
∞

0
dζFB(−V0,ζ )

∫
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Last, we combine Eqs. (B5) and (85) to obtain

R∗c =i
h̄ko

µc

∫
∞

0
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(
|ψ̃(k)|2−|ψ̃(−k)|2

)√ Ẽ2
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+ ko
2
π

∫
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1
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GB(Vo,y)
∫
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h̄ y
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h̄2 y2
. (B6)

Notice that the first term of (B6) is generally complex-valued while the second term is always real-
valued.
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