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Chirality describes the asymmetry between an object and its mirror image and manifests

itself in diverse functionalities across all scales of matter - from molecules and aggregates to

thin films and bulk chiral materials. A particularly intriguing example is chirality-induced

spin selectivity (CISS), where chiral structures orient electron spins enantio-sensitively. De-

spite extensive research, the fundamental origin of spin-chirality coupling, the unexpectedly

large magnitude of the CISS effect, and the possible role of electromagnetic fields in it remain

unclear. Here, we address these issues by examining the simplest scenario: spin-resolved

photoionization of randomly oriented chiral molecules. We uncover a universal mechanism

of spin-selective chiral photodynamics, arising solely from electric-dipole interactions and

previously unrecognized. This mechanism embodies a chiral molecular compass — a pho-
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toinduced magnetization vector that orients the photoelectron spin. It arises in photoexcited

chiral molecules even under isotropic illumination, operates even in isotropic chiral media,

and enables a phenomenon central to CISS: locking of the photoelectron spin orientation

to molecular geometry. It shows that chiral molecules can sustain time-odd correlations

whereas achiral molecules cannot. Our findings have broad implications, from unambigu-

ously identifying the origin of CISS effect in photoionization to harvesting correlations un-

derlying this effect in other forms of CISS in various chiral materials.

1 Introduction

Chiral molecular interactions are a remarkable example of a geometrically robust response active in

living matter, maintained in complex and noisy environments and operating at ambient conditions

1, 2. It has potential for applications, e.g., in quantum technologies 3–7, with CISS being an example

of useful functionality 8. Originally observed as enantio-sensitive electron spin polarization upon

transport through chiral biomolecules 9, 10, CISS now encompasses a broad range of electronic

processes where molecular chirality governs spin polarization 1, 8. Beyond molecular systems,

solid-state materials with chiral crystal lattices exhibit a related but more complex influence on

spin: they stabilize noncollinear spin textures such as skyrmion crystals - topologically nontrivial

spin configurations whose formation and control are governed by the chirality of the lattice 11, 12.

Many CISS-related phenomena are induced by light, suggesting the possibility of ultrafast

control over spin-sensitive chemical processes via photoexcitation or photoionization. The inter-

play between spin and chirality naturally suggests spin-orbit coupling (SOC) as the underlying
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mechanism for spin selectivity. However, several experiments have shown that SOC alone can-

not explain the observed effect 13–15. Numerous theoretical approaches including scattering theory

16–19, tight-binding models 20–24, density functional theory 25–27, scattering off magnetic impurities

28, electron correlation models 29, electron-phonon coupling 30, 31, non-adiabatic coupling 32, 33, and

field-theoretical treatments 34 have been proposed, yet a complete understanding remains elusive 1.

Diverse challenges for interpretation emerge due to the presence of multiple factors that potentially

affect this process in experimental measurements thereby complicating its analysis, e.g., leads or

substrates for molecules, and impurities, defects, or spurious fields for solids.

Here, we examine the simplest yet ubiquitous example of spin-chirality coupling: spin-

resolved photoionization of randomly oriented chiral molecules. Once ambiguities related to

anisotropic targets or substrates, and complex detection schemes involving leads are removed, the

fundamental origins of spin-chirality coupling associated with photodynamics emerge with a strik-

ing clarity in an approach which is equally applicable to photoionization and photoexcitation of

randomly oriented molecules. We find that molecular chirality induces a directional bias coupled

to photoelectron spin. This intrinsic molecular compass leads to a previously unreported effect:

enantio-sensitive locking of molecular orientation to photoelectron spin, which is related to the

core of CISS. The molecular compass operates in fields of arbitrary polarization, including fully

isotropic polarization, and can yield enantio-sensitive spin-orientation locking of up to 64%, even

for spin-unpolarized initial states. It bypasses the weak magnetic-field interaction, relying solely

on electric-dipole interactions between the light field and the molecule.
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In closed-shell molecules, photoionization directly links the spin of the cation (hole) to its

orientation, establishing an initial spin–orientation correlation that can bias spin-selective phenom-

ena in orientation-sensitive environments (e.g. interfaces or orientation-dependent molecular re-

actions). Although the hole spin subsequently evolves through spin–orbit and vibronic couplings,

this evolution proceeds with an opposite phase in opposite enantiomers. Thus, enantio-sensitive

spin-orientation locking triggers enantio-sensitive spin densities and currents in molecular cations.

We show that correlations between photoelectron spin and molecular orientations underlying this

phenomenon are enabled by chirality.

2 Spin-orientation locking and its relation to CISS

To isolate the intrinsic interplay between molecular chirality and spin that underlies the CISS

effect from any extrinsic orientational biases, consider a gedanken experiment: photoionization of

randomly oriented chiral molecules under isotropic illumination by linearly polarized light. In such

conditions, the light field introduces no preferred laboratory direction, so any observed anisotropy

must arise solely from the molecular structure itself. We first discuss the general requirements for

such anisotropy to exist, and then rigorously derive and quantify this effect using a synthetic chiral

system.

If the cation orientation ê locks to the detected photoelectron spin direction along a labora-

tory axis ŝL, then we should observe different amounts of oriented cations correlated to spin-up

and spin-down photoelectrons along this axis. For this correlation to exist in randomly oriented
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thermal ensembles, there must exist a unique molecular axis Ŝ along which the propensity to gen-

erate photoelectrons with a particular spin projection is maximal. This requirement implies that the

correlation tensor Gij = ⟨eisj⟩ reflects an intrinsic molecular property, where ê is a unit molecular

axis (e.g. molecular bond or fragment recoil direction), and ŝ is the spin detection axis of the

photoelectron. Both are defined in the molecular frame, and the averaging ⟨·⟩ is performed over

isotropic illumination directions. Consequently, this intrinsic tensor must have a uniaxial symme-

try about Ŝ. The most general second-rank tensor consistent with this symmetry can be written

as

Gij = g∥ ŜiŜj + g⊥ (δij − ŜiŜj), (1)

which represents the uniaxial decomposition into longitudinal (g∥) and transverse (g⊥) components

relative to the molecular axis Ŝ. Accordingly, the tensor Gij encodes both the geometrical align-

ment and the strength of the intrinsic spin–orientation coupling through the parameters g∥ and g⊥.

The existence of spin–orientation locking requires a single dominant eigenaxis of this tensor, i.e.,

|g∥| > |g⊥|. If the transverse response were stronger (|g∥| < |g⊥|), then the maximal correlation

with maximal spin-polarization would occur within the plane orthogonal to Ŝ, yielding no unique

axis and thus no net correlation and thus no spin-orientation locking after orientational averaging.

For a spin-conditioned ensemble, the mean molecular orientation is ⟨ê⟩ŝ = Gŝ, while for an

orientation-conditioned ensemble—corresponding to an oriented molecule—the mean spin polar-

ization given a fixed molecular orientation is ⟨ŝ⟩ê = GT ê (see Methods). The symmetry requires

that Gij is a time-odd pseudotensor, so that the orientation ⟨ê⟩ŝ is a time-even polar observable,

whereas the spin-polarization ⟨ŝ⟩ê is a time-odd axial one, consistent with their respective phys-
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ical meanings. These symmetry properties constrain correlations to vanish in achiral molecules,

Gij = 0. Equivalently, in achiral molecules the pseudoscalars g∥ = g⊥ = 0. The intrinsic axial

direction Ŝ is a structural/electronic property of the molecule and does not, by itself, guarantee

a measurable spin–orientation correlation. The correlation tensor [Eq. (1)] is nonzero only if the

pseudoscalar couplings g∥ and/or g⊥ are nonzero. Thus, Gij = 0 implies the absence of correlation

even though Ŝ may be well-defined; conversely, the observation of a correlation requires a chiral,

time-odd coupling (nonzero pseudoscalar amplitude) to the intrinsic axis.

It is convenient to rescale the pseudovector Ŝ as S =
√
|g∥| Ŝ such that the tensor Gij

can be represented in a more compact form involving two dimensionless parameters: the pseu-

doscalar κ = sign(g∥) and the scalar γ = g⊥/g∥ < 1 quantifying the relative transverse response:

Gij = κ [SiSj + γ (|S|2δij − SiSj)]. The pseudovector S can be regarded as an enantiosensitive

molecular compass as it encodes both the presence of chiral coupling and its directionality. This

implies that photoexcitation or photoionization under isotropic illumination, without any influence

from the magnetic component of light, can effectively “magnetize” an excited or photoionized

molecule. Such molecular compass is unique to chiral molecules.

After averaging over random molecular orientations ρ the spin–conditioned orientation yields:

〈
⟨ê⟩ŝ

〉
ρ
=

〈
Gŝ

〉
ρ
=
g∥
3
(1 + 2γ) ŝL. (2)

In the laboratory frame, the corresponding detection directions are obtained by rotation Rρ: êL =

Rρê, ŝL = Rρŝ. Equation (2) is a manifestation of enantio-sensitive spin-orientation locking:

cations correlated with photo-electrons having positive (negative) spin projection onto the detection
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Figure 1: Spin-chirality coupling in photoionization of randomly oriented molecules under

isotropic illumination is unique to chiral media. (a) The Bloch vector S⃗
M

is “attached” to the

molecule and represents the direction of molecular compass in chiral molecules . (b) After pho-

toionization the cation cloud (grey) correlated to photoelectrons with specific spin projection on

the spin detection axis ŝL possesses a net orientation such that S⃗
L

is parallel to ŝL. (c) The di-

rection of spin to cation orientation locking is enantio-sensitive: the photoelectron spin is parallel

(antiparallel) to S⃗
L

for right (left) molecules. (d) The density matrix ρ of a degenerate two-level

system corresponding to spin-up | ↑⟩ and spin-down | ↓⟩ states of the photoelectron with energy

E = k2

2
can be averaged over molecular orientations to yield reduced density matrix ϱ. The Bloch

vector S⃗
M

is defined on the Bloch sphere in the molecular frame {ξ̂M , η̂M , ζ̂
M}, and is propor-

tional to the expectation value of the spin operator for a state with density matrix ϱ.
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axis ŝL are oriented with Ŝ
L

parallel (antiparallel) to ŝL. This phenomenon, unique to chiral media,

ensures opposite orientations for cations of opposite handedness linked to the same photoelectron

spin, and vice versa (see Fig.1). However, this phenomenon also has an additional manifestation

uncovering the nature of CISS in photoionization.

Indeed, consider an orientation-conditioned measurement corresponding to a fixed molecule,

i.e., the laboratory frame coincides with the molecular frame. The same structure of the cor-

relation tensor Eq. (1) leads to the second manifestation of spin-orientation locking – the net

enantio-sensitive spin-polarization which depends on the molecular orientation êL with respect to

molecular axis Ŝ
L

and quadratically encodes SL emphasizing its correlative origin:

⟨ŝ⟩ê = GT ê = κ
{
(ê·S)S + γ

[
|S|2ê− (ê·S)S

]}
. (3)

Under parity inversion, the laboratory frame and the axis ê are kept fixed, S is parity even

and remains intact, while the molecular pseudoscalar g∥ changes sign κ → −κ. Applying these

transformations to Eq. (3) gives

⟨ŝ⟩right
ê = −⟨ŝ⟩left

ê . (4)

Hence, spin polarization observed for a fixed molecular orientation reverses sign between opposite

enantiomers: the effect is enantio-sensitive because it is proportional to the pseudoscalar coupling

g∥ while the molecular axis Ŝ itself is parity-even. Defining the angle θ between the molecular

orientation axis ê and the molecular axis Ŝ, the direction and magnitude of the spin polarization
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in an oriented molecule are

⟨ŝ⟩ê = g∥

[
cos θ Ŝ + γ sin θ ê⊥

]
, |⟨ŝ⟩ê| = g∥

√
γ2 + (1− γ2) cos2 θ. (5)

Since we have established that |γ| < 1, the direction of maximal spin polarization coincides with

Ŝ. Its magnitude is determined by g∥, and its sign by the relative orientation of Ŝ and ê:

⟨ŝ⟩max
ê = g∥ sign(cos θ) Ŝ. (6)

The angle θ = 0 or π corresponds, respectively, to the two possible handednesses of the experi-

mental frame.

3 Quantifying spin-orientation locking

Having established the general conditions for spin-orientation locking in photoionization and its

connection to CISS, we now quantify the former effect. Mathematically, the direction of molecular

axis Ŝ is defined by a Bloch pseudovector S⃗ describing spin orientation in the degenerate two-

level system formed by spin-up and spin-down continuum states populated by photoionization.

Indeed, let us introduce a reduced density matrix ϱ̃M of such a two-level system associated with a

photoelectron of a given energy. This matrix

ϱ̃Mµ1,µ2
=

∑
I

∫
dΘM

k

(
D⃗

M∗
I,⃗k

M
,µ1

· D⃗
M

I,⃗k
M

,µ2

)
(7)

naturally arises in one-photon ionization. Here, D⃗
M

I,⃗k
M

,µ is the molecular-frame transition dipole

(see Methods), I labels the final state of the ion, µ = ±1
2

labels the spin projections onto the

molecular z-axis ζ̂
M

, k⃗
M

is the final photoelectron momentum in the molecular frame, and
∫
dΘM

k
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denotes averaging over all directions of k⃗
M
. The reduced density matrix Eq. (7) emerges after

averaging over random molecular orientations (see Methods). Since Fermi’s Golden Rule ties the

transition rate to the transition dipole moment, Eq. (7) serves as the analogue of a Liouville–von

Neumann density matrix with light–molecule orientation averaged out.

The geometric nature of Eq. (7) is revealed by expressing it as:

ϱ̃M

Tr[ϱ̃M ]
=

1

2

(
I+ S⃗

M
· σ̂M

)
, (8)

where σ̂ is the vector of the Pauli spin matrices, Tr[ϱ̃M ] ≡ S0 is the total ionization rate, ϱ̃M

Tr[ϱ̃M ]

is the normalized reduced density matrix and S⃗
M

is the Bloch vector controlling enantio-sensitive

spin-orientation locking,

S⃗
M

=
1

S0

Tr
(
ϱ̃M σ̂M

)
. (9)

Both ϱ̃M and S⃗
M

only depend on the photoionization (or photoexcitation) dipoles and encode the

properties of molecular states.

Even in the case of isotropic illumination in chiral molecules, the Bloch vector works as a

molecular compass that locks the orientation of the molecular structure to the photoelectron spin:

〈
⟨êL⟩ŝL

〉iso
ρ

≡
∫
dΘM

k

∫
dΘp

∫
dρWM(k̂

M
, ŝM , ρ)e⃗L∫

dΘL
s

∫
dΘM

k

∫
dΘp

∫
dρWM(k̂

M
, ŝM , ρ)

=
ν

3
|S⃗

M
|ŝL (10)

where ν = ±1 for opposite enantiomers (see Methods). Equation (10) defines the expectation

value of the molecular vector e⃗M in the photoionized ensemble of randomly oriented molecules.

Here, WM(k̂M , ŝM , ρ) is the momentum- and spin-resolved ionization rate, while
∫
dρ, and

∫
dΘp

denotes averaging over molecular, and light field orientations, respectively. Last,
∫
dΘM

k and
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∫
dΘL

s describe averaging over directions of photoelectron momenta and spin directions, respec-

tively. It shows that that correlations between an orientation-averaged value ⟨e⃗L⟩ of a molecular

vector e⃗M and the photo-electron spin orientation measured along the laboratory ŝL survives av-

eraging over random orientations of the chiral molecule (
∫
dρ) and the directions of the photo-

electron momenta (
∫
dΘM

k ). Moreover, we can establish the lower bound on the pseudoscalar g∥

characterising CISS |g∥| = |S⃗M |
1+2γ

≥ |S⃗
M
|, where |γ| ≤ 1.

Although the Bloch pseudovector can exist in achiral molecules, parity symmetry forbids any

spin–orientation locking. In an isotropically illuminated, randomly oriented ensemble such as, e.g.,

HCl, mirror reflection leaves both the molecular distribution and the light field unchanged. The

laboratory spin-detection axis ŝL, being a pseudovector, also remains invariant under reflection.

If a correlation between spin and molecular orientation were present—for instance, H–Cl cations

preferentially associated with spin-up electrons—the mirrored configuration would produce the

opposite cation orientation (Cl–H) for the same spin direction. Because the two mirror-related

outcomes are equally probable, their contributions cancel in the ensemble average, and no net

spin–orientation correlation can survive in achiral molecules.

To quantify spin-chirality coupling in photoionization, we construct spin-resolved chiral

electronic states in an Ar atom, rigorously incorporating electronic chirality and spin-orbit cou-

pling. Inspired by analogous chiral hydrogenic states 35, these states combine excited-state orbitals:

|ψ±
m,µ⟩ =

1√
2
(|4pm, µ⟩ ± |4dm, µ⟩) . (11)

To generalize Eq. (11) for a multielectron system such as argon (see Methods), we employ an
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Figure 2: Comparison of the (a) isosurface and (b) contour plots of the chiral electronic states

|ψ+
−1, 1

2

⟩ and |ψ−
−1, 1

2

⟩ shown in the top and bottom row (in the molecular frame), respectively, and

colored according to its phase. The molecular {x, y, z} axes are labeled as {ξ, η, ζ}, respectively.

The isosurface is set at |ψ±
−1, 1

2

| = 3.2 × 10−3Bohr3/2. The contour plots are cuts on the ξ = 0,

ζ = 0, and η = 0 planes. Thicker contour lines and darker shading correspond to higher values

of the density. It can be seen that the probability density of the states |ψ±
−1, 1

2

⟩ are mirror images of

each other.

optimization approach detailed in Appendix A. Unlike hydrogen, the multielectron core potential

in argon breaks inversion symmetry, lowering the symmetry of the resulting states (Fig.2). Conse-

quently, synthetic chirality in argon is stabilized by electron correlations making this system ideal

for exploring spin-chirality coupling computationally within a fully consistent approach.

Figure 3 shows the degree of spin-orientation locking for different chiral states in our syn-
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a) b)

c)

Figure 3: Enantio-sensitive spin-orientation locking under isotropic illumination of randomly ori-

ented electronic states. (a) The Bloch pseudovector S⃗
M

(internal directional bias) in the molecular

frame for the chiral argon states. S⃗
M

changes its direction in space as a function of the photo-

electron momentum k. Trajectories traced by this vector are shown for 0 < k < 0.8 Bohr−1. (b)

Degree of orientation for chiral states with m = 1, µ = ±1
2

(violet and orange correspondingly),

and averaged over spin orientation in initial state (black). (c) Degree of orientation for chiral states

with m = −1, µ = ±1
2

(red and green correspondingly) and averaged (black). The rapidly oscil-

lating behavior at higher values of k are due to the Fano resonances, leading up to the ionization

threshold for the 3s electrons 36, 37.
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thetic chiral system under random illumination as a function of the photoelectron momentum

k =
√
2E. Black curves in Fig.3 (b,c) show results for photoionization from initially spin-

unpolarised states, corresponding to an incoherent superposition of the chiral states withm = 1 and

ms = ±1/2 in Fig.3 (b) and m = −1 and ms = ±1/2 in Fig.3 (c). We see strong spin-orientation

locking even in such a small chiral system, with ⟨êL · ŝL⟩ = ⟨cos β⟩ ≃ 0.13 corresponding to about

60% of the ionized molecules oriented such that êL has positive projection onto ŝL for m = 1 ini-

tial states and ⟨êL · ŝL⟩ ≃ 0.19 corresponding to about 64% of the ionized molecules oriented such

that êL has positive projection onto ŝL for m = −1 (see Methods).

The Bloch vectors for m = 1,ms = ±1/2 are almost orthogonal to each other (see orange

and violet arrows in Fig.3 (a)), while for the state m = +1,ms = 1/2 the Bloch vector is orthogo-

nal to the chosen spin quantization axis ζ̂
M

. The latter signifies strong contribution of coherences

to the longitudinal spin-orientation locking arising during photoionization. The role of coherences

in longitudinal spin polarization has not been identified before, because the latter is usually iden-

tified as the z-component of the spin expectation value in the final state, which only reflects the

difference in populations of the spin-up and spin-down final states at the detector. Figure 3 also

demonstrates that the direction of the Bloch vector changes as a function of the photoelectron

energy.

An additional directional bias introduced by the laser field may enhance the enantio-sensitive

spin-orientation locking. The well-defined direction of light polarization (circular or linear) in-
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duces an additional directional bias quantified by the vector

S⃗′M =
1

S0

Re

 ∑
I,µM

1 ,µM
2

∫
dΘM

k

(
D⃗

M∗
I,⃗k

M
,µM

1
· σ̂M

µM
2 ,µM

1

)
D⃗

M

I,⃗k
M

,µM
2

 (12)

and also leads to two possible detection geometries in which the photoelectron spin can be detected

either orthogonal (ŝL ⊥ ϵ̂L) or collinear (ŝL ∥ ϵ̂L) to the light field polarization vector ϵ̂L. In the

case of linearly polarised field with orthogonal detection geometry, enantio-sensitive spin orienta-

tion locking reaches extremely high values up to 73% (⟨êL · ŝL⟩ = 0.3 at k = 0.6 a.u., red curve)

and 68 % (⟨êL · ŝL⟩ = 0.24 at k = 0.31 a.u., black curve) , see Fig. 4(a), for spin unpolarised

initial state both exceeding those for isotropic illumination, see Fig. 3(c). In this case the axis of

molecular orientation is 2S⃗
M

+ S⃗′M and the probability to orient molecular cations is:

〈
⟨êL⟩ŝL⊥ϵ̂L

〉
ρ
=
ν

5
|2S⃗

M
+ S⃗′M |ŝL, (13)

where êM is a unit polar vector along 2S⃗
M

+ S⃗′M and êL is its ensemble averaged value. This

indicates that partial alignment by photon absorption encapsulated in S⃗′M indeed enhances the

effect. However, collinear detection geometry results in an overall low signal, Fig. 4(b), because

in this case S⃗
M

and 2S⃗′M partially compensate each other:

〈
⟨êL⟩ŝL∥ϵ̂L

〉
ρ
=
ν

5
|S⃗

M
− 2S⃗′M |ŝL, (14)

where êM is along the axis of molecular orientation êM ∥ S⃗
M

− 2S⃗′M .

4 Conclusions and Outlook

Quantum correlations between the photoelectron spin and the molecular skeleton orientation are

unique to chiral molecules. Importantly, they survive averaging over random molecular orienta-
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b)

a)

Figure 4: Enantio-sensitive spin-orientation locking resulting from illumination of randomly ori-

ented electronic states by linearly polarised fields in (a) orthogonal detection geometry ŝL ⊥ ϵ̂L

[Eq. (13)] and (b) collinear detection geometry ŝL ∥ ϵ̂L [Eq. (14)]. For both panels, m = 1,

µ = ±1
2

(violet and orange correspondingly), m = −1, µ = ±1
2

(red and green correspondingly)

and black corresponds to spin unpolarised initial state.

tions, with the coherence between the spin-up and spin-down final components of the photoelectron

recorded in the Bloch pseudovector resulting from the reduced density matrix. These correlations

underlie the main microscopic mechanism of chirality induced spin selectivity. We identify the

photoionization Bloch vector as a chiral molecular compass mediating spin-chirality coupling and

offering significant control over the orientation of enantiomers in space. Conversely, the chiral

molecular compass also gives rise to enantio-sensitive spin dynamics in photoexcited oriented

molecules. Our approach highlights that both the direction and magnitude of the chiral molecular

compass depend sensitively on photon energy, leading to either strong or weak spin polarization
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within the same chiral medium. We expect that the enantio-sensitive molecular compass is also

relevant for understanding electron spin polarization in scattering from gas-phase chiral molecules

38, 39 - the phenomenon that predated the formulation of the CISS effect. The enantio-sensitive

molecular compass may represent a possible mechanism contributing to the long-standing puzzle

of avian orientation.

Methods

The nature and the symmetry of the correlation tensor

To understand the microscopic origin of the spin–orientation correlation tensor, consider an entan-

gled wavefunction of orientational and spin degrees of freedom,

|Ψ⟩ =
∫
dρcρ |eρ⟩ |sρ⟩, (15)

with ϱ = |Ψ⟩⟨Ψ| or, for a mixed state, the density matrix

ϱ =

∫
dρ|cρ|2 |eρ⟩ ⟨eρ| ⊗ |sρ⟩ ⟨sρ| , (16)

where |eρ⟩ and |sρ⟩ denote the molecular orientation and spin states in each elementary config-

uration ρ. The joint quantum statistics of these two observables are fully encoded in the cross-

correlation tensor

Gij = ⟨eisj⟩ = Tr
[
ϱ (Êi⊗σ̂j)

]
, (17)

where ei and sj represent orientation and spin detection axis and Êi, σ̂j are the corresponding

operators acting in the orientation and spin subspaces, respectively. We use the dimensionless

17



Pauli matrices σ = (σx, σy, σz) to represent the spin direction operator, related to the physical spin

operator by Ŝ = 1
2
σ. This choice ensures that both spin-conditioned and orientation-conditioned

averages are governed by the same tensor Gij without additional scaling factors. The tensor Gij

encapsulates the full set of quantum-mechanical correlations between spin and orientation and is

the same object that governs both conditional averages discussed below. Formally, it encodes how

the detected orientation axis ê (time-even, polar) depends on the detection spin axis ŝ (time-odd,

axial) and vise versa.

Let us first consider the orientation-conditioned expectation value of the spin, which can be

written as

⟨σj⟩ê =
Tr

{
ϱ [F (ê)⊗ σ̂j]

}
Tr

{
ϱ [F (ê)⊗ I]

} . (18)

Here, ϱ is the joint density operator of the molecular orientation and spin subsystems, while F (ê) is

a positive-operator-valued measure (POVM) element acting in the molecular-orientation subspace.

It represents the measurement of the molecular axis direction ê and corresponds to a finite solid-

angle window around that direction on the sphere. It satisfies F (ê) ≥ 0 and the completeness

relation
∫
4π
F (ê) dΩ = I, ensuring that the probabilities of all possible orientations sum to unity

and is isotropic
∫
ei F (ê) dΩ = 1

3
Êi.

To evaluate Eq. (18), the POVM F (ê) is expanded in an irreducible tensor basis constructed

from ê, i.e.,

F (ê) =
1

4π
I +

1

4π
eiÊi + a2Qij(ê)Q̂ij + · · · (19)
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Here, Qij(ê) = eiej − 1
3
δij is the traceless quadrupole and Q̂ij the corresponding rank-2 operator

on the orientation space. We also assume that the joint state ϱ has isotropic marginals, meaning

that neither the orientation nor the spin subsystem possesses a net vector expectation:

Tr
[
ϱ (Êi ⊗ I)

]
= 0, Tr

[
ϱ (I ⊗ σ̂j)

]
= 0. (20)

Substituting Eq. (19) into Eq. (18), we see that the only term in the numerator that can

produce a vector quantity is the rank-1 term 1
4π
eiÊi. Meanwhile, the scalar and higher-rank terms

cannot contract with σ̂j to yield a rank-1 object without a vector available from the state itself,

which is excluded by isotropy, thus,

Tr
{
ϱ [F (ê)⊗ σ̂j]

}
=

1

4π
ei Tr

[
ϱ (Êi ⊗ σ̂j)

]
. (21)

Similarly, the denominator of Eq. (18) becomes

Tr
{
ϱ [F (ê)⊗ I]

}
=

1

4π
Tr[ϱ] + a2Qkl(ê) Tr

[
ϱ (Q̂kl ⊗ I)

]
+ · · · (22)

The rank-1 term vanishes because of the assumption that the joint state ϱ has isotropic marginals,

Eq. (20), while the scalar term yields a constant 1
4π

Tr[ϱ]. For an isotropic orientation marginal, all

rank ≥ 1 contributions vanish, so the denominator reduces to the constant 1
4π

Tr[ϱ].

The the orientation-conditioned expectation value of the spin, Eq. (18), thereby simplifies to

⟨σj⟩ê = eiGij Gij = Tr
[
ϱ (Êi ⊗ σ̂j)

]
. (23)

If Gij is symmetric, as in the uniaxial case Gij = Gji, then the same tensor also governs the spin-

conditioned orientation law ⟨Ei⟩ŝ ∝ Gijsj , demonstrating that both conditional averages originate

from the same correlator Gij .
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Indeed, the spin-conditioned expectation value of the molecular orientation can be written

analogously as

⟨Ei⟩ŝ =
Tr

[
ϱ (Êi ⊗ P̂ŝ)

]
Tr

[
ϱ (I ⊗ P̂ŝ)

] , (24)

in which the joint density operator ϱ describes the correlated orientation–spin system. Here, P̂ŝ is

the spin projector corresponding to detecting an electron spin oriented along ŝ, i.e.,

P̂ŝ =
1
2

(
I + ŝ·σ

)
, (25)

where, σ is the vector of Pauli matrices. Substituting Pŝ into Eq. (24), and assuming isotropic

marginal states, Eq. (20), we obtain

⟨Ei⟩ŝ =
sj

Tr[ϱ]
Gij = Gijsj, Gij = Tr

[
ϱ (Êi ⊗ σ̂j)

]
. (26)

Hence, both the spin-conditioned, Eq. (23), and orientation-conditioned, Eq. (26), averages are

governed by the same correlation tensor Gij , reflecting that the observed spin–orientation correla-

tions originate from a single microscopic source - the quantum entanglement encoded in the joint

state ϱ.

Orientation-conditioned spin polarization from the correlation tensor

We start from the (uniaxial) spin–orientation correlation tensor

Gij = κ
[
SiSj + γ

(
|S|2δij − SiSj

)]
, (27)

where S is the intrinsic molecular-frame pseudovector that sets the uniaxial symmetry of the cou-

pling, κ is a scalar scale factor, and γ is the transverse/longitudinal anisotropy parameter. Indices

i, j ∈ {x, y, z} and Einstein summation is implied over repeated indices.
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For an orientation-conditioned measurement, the mean spin polarization is obtained by con-

tracting Gij with ej:

⟨si⟩ej = Gij ej. (28)

Substituting Eq. (27) into Eq. (28) we obtain:

⟨si⟩ej =κ
[
Si(Sjej) + γ

(
|S|2δijej − SiSjej

)]
=κ

{
Si (S ·ê) + γ

[
|S|2ei − Si (S ·ê)

]}
. (29)

which can be written in vector form as:

⟨ŝ⟩ê = κ
[
(S ·ê)S + η

(
|S|2ê− (S ·ê)S

)]
. (30)

Synthetic chiral matter

Quantification of spin-chirality coupling in photoionization requires a system where both elec-

tronic chirality and spin-orbit coupling are rigorously accounted. To this end, we construct chiral

electronic densities in an Ar atom corresponding to excitation into a chiral superposition of ex-

cited states, resolved on the excited electron spin. The eigenstates and associated spin-resolved

photoionization dipole matrix elements of Ar atom were calculated using an atomic configuration-

interaction singles treatment 37, 40, 41:

D⃗
M

I,⃗k
M

,µM ≡⟨IΨ(−)

I,⃗k,µM
|d⃗

M
|ψo⟩ = ⟨ψ(−)

I,⃗k,µM
| ⟨χµM |[ĥS, θ(r − rs)]

√
N ⟨I|(Ĥ0 − ϵ)−1d⃗

M
|ψo⟩ ,

(31)

In Eq. (31), the volume integral in the matrix element is replaced with a surface integral

over a sphere of radius rs where the exact continuum state is matched to the scattering state in
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the asymptotic region 37 and a time integral which has been explicitly evaluated. The resolvent

(Ĥ0 − ϵ)−1 formally propagates the component of d⃗
M
|ψo⟩ with energy ϵ = EI + k2/2 to infinite

time, where EI is the energy of the ion state I , and the projection from the left by
√
N ⟨I| yields an

energy-resolved Dyson orbital (N is the number of electrons). The commutator of the scattering

Hamiltonian ĥS , i.e., the asymptotic Hamiltonian obeyed by the wave function and the scattering

state in the region beyond the matching surface rs and the Heaviside function θ(r− rs) reduces the

remaining one-electron volume integral to the surface integral 37.

Chiral spin resolved electronic states in Ar are inspired by a similar spinless chiral superpo-

sition in the hydrogen atom 35, and in the case of hydrogenic wave-functions could be represented

as:

|ψ±
m,µ⟩ =

1√
2
(|4pm, µ⟩ ± |4dm, µ⟩) . (32)

Aiming to create analogues of such states in a multielectron system such as the argon atom, we

devised an optimization procedure that yields the best approximation to these states (see Appendix

A for details).

Bloch vector associated with spin-resolved photoionization

Using perturbation theory, the full spinor electron wave-function at the end of the ionizing pulse

is:

|ψ⟩ = |ψo⟩+
∑
I,µM

∫
dΘM

k c
I,⃗k

M
,µM

|IΨ(−)

I,⃗k
M

,µM
⟩, (33a)

c
I,⃗k

M
,µM

= i
(
D⃗

L

I,⃗k
M

,µM · E⃗
L
)
, (33b)
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where, |Ψ(−)

I,⃗k,µ
⟩ are fully spin-orbit coupled continuum states, which are the two components of a

spinor-valued scattering solution with opposite projections of spin (µ = ±1
2
) onto the molecular

z-axis ζ̂ subject to the orthogonality condition ⟨I1Ψ(−)

I1 ,⃗k1,µ1
|I2Ψ(−)

I2 ,⃗k2,µ2
⟩ = δI1,I2δ(k⃗1 − k⃗2)δµ1,µ2 .

The ion channel is denoted by I , while D⃗
L

I,⃗k
M

,µM = ⟨IΨ(−)

I,⃗k,µ
|d⃗

L
|ψ0⟩ is the transition dipole matrix

element, and E⃗
L

is the light field.

We now consider the full density operator describing the spin and spatial degrees of freedom

for ionization into the final photoelectron momentum k =
√
2E and (degenerate) ion channels I

(fixed by the energy conservation):

ϱ̂M =
∑
I,I′

∫
dΘM

k

∫
dΘM

k′

∑
µ1,µ2

cI,⃗k,µ1
c∗
I′,k⃗′,µ2

|IΨI,k⃗′,µ1
⟩⟨ΨI,⃗k,µ2

I ′|. (34)

To obtain the reduced spin-space density matrix, we perform a partial trace over the spatial contin-

uum states and (degenerate) ionization channels:

ϱMµ1,µ2
=Tr(spatial+channels)(ϱ̂

M) =
∑
I

∫
dΘM

k ⟨IΨI,⃗k,µ1
|ϱ̂M |IΨI,⃗k,µ2

⟩. (35)

Using Eqs. (34) and (35), we obtain:

ϱMµ1,µ2
=

∑
I

∫
dΘM

k cI,⃗k,µ1
c∗
I,⃗k,µ2

, (36)

which follows from the orthogonality condition.

A possible way of introducing the Bloch vector describing spin orientation of a two-level

spin 1/2 system defined as P⃗ ≡ Tr
(
ϱM σ̂M

)
is to use ϱM with elements given by Eq. (36). In this

case, the Bloch vector would depend on the properties of the laser field via cI,⃗k,µ1
, cI,⃗k,µ2

. However,

23



such object does not characterize enantio-sensitive spin orientation locking as it follows from first

principles derivation of spin-orientation locking exposed in the last subsection of Methods.

We now introduce the photoionization Bloch vector S⃗
M

by averaging ϱMµ1,µ2
over random

molecular orientations, i.e.,∫
dρ ϱMµ1,µ2

=
∑
I

∫
dΘM

k

[∫
dρ

(
D⃗

L

I,⃗k
M

,µM
1
· E⃗

L
)(

D⃗
L∗
I,⃗k

M
,µM

2
· E⃗

L∗)]
=

1

3
|E⃗

L
|2ϱ̃Mµ1,µ2

(37a)

ϱ̃Mµ1,µ2
=

∑
I

∫
dΘM

k

(
D⃗

M

I,⃗k
M

,µ1
· D⃗

M∗
I,⃗k

M
,µ2

)
. (37b)

Normalizing ϱ̃Mµ1,µ2
in a standard way to its trace Tr[ϱ̃M ] = S0, where S0 is the total ionization rate:

S0 =
∑
I

[∫
dΘM

k

(∣∣∣D⃗M

I,⃗k
M

, 1
2

∣∣∣2 + ∣∣∣D⃗M

I,⃗k
M

,− 1
2

∣∣∣2)] (38)

we can write in the following equivalent form:

ϱ̃M

Tr[ϱ̃M ]
=

1

2

(
I+ S⃗

M
· σ̂M

)
. (39)

Here, S⃗
M

is the photo-ionization Bloch pseudovector in real space

S⃗
M

=
1

S0

Tr
(
ϱ̃M σ̂M

)
. (40)

S⃗M is an intrinsic molecular property invariant under rotations of the spin quantization axis pro-

vided that these rotations are applied consistently to both the density matrix ϱ̃M and the spin oper-

ator σ̂M .

Quantifying spin-orientation locking

The spin-resolved ionization rate for a given orientation is obtained by projecting the full wave-

function Eq. (33) onto the scattering and ionic states onto the spin detection axis ŝL with energy
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E , i.e.,

WM(kM , ŝM , ρ) = ⟨ψ|P̂E |ψ⟩ =
∫
dΘM

k W
M(k̂

M
, ŝM , ρ) (41a)

P̂E =
∑

I,µ1,µ2

∫
dΘM

k |IΨ(−)

I,⃗k,µ1
⟩
[
I+ ŝL · σ̂L

2

]
µ2,µ1

⟨IΨ(−)

I,⃗k,µ2
|, (41b)

where, WM(k̂
M
, ŝM , ρ) is the the momentum- and spin-resolved rate. Substituting Eq. (33) into

Eq. (41), and performing the necessary operations, we obtain

WM(k̂
M
, ŝM , ρ) =

1

2

∑
I,µM

1 ,µM
2

(
D⃗

L∗
I,⃗k

M
,µM

1
· E⃗

L∗)(
D⃗

L

I,⃗k
M

,µM
2
· E⃗

L
)(

δµM
1 ,µM

2
+ ŝM · σ̂M

µM
2 ,µM

1

)
,

(42)

where, we introduced the vector σ̂L
µ,ν = ⟨χµ|σ̂M |χν⟩.

Equation (42) fixes the photoelectron momentum and spin-detection axis in the molecu-

lar and laboratory frame, respectively. By doing so, the transition dipole matrix element in the

molecular frame D⃗
M

I,⃗k
M

,µM will not have any argument that depends on the orientation ρ, and can

therefore be trivially rotated into the lab frame:

D⃗
L

I,⃗k
M

,µM =⟨IΨ(−)

I,⃗k
M

,µM
|d⃗

L
|ψo⟩ = ⟨IΨ(−)

I,⃗k
M

,µM
|Rρd⃗

M
|ψo⟩

=Rρ⟨IΨ(−)

I,⃗k
M

,µM
|d⃗

M
|ψo⟩ = RρD⃗

M

I,⃗k
M

,µM . (43)

Meanwhile, by fixing the spin-detection axis in the lab frame, the spin projection operator P̂ŝ =(
I+ ŝL · σ̂L

)
/2 essentially rotates the direction of photoelectron spin from the molecular to the

laboratory frame, then projects it to the spin-detection axis ŝL:

ŝL · σ̂L
µM
1 ,µM

2
= ŝL · ⟨χµM

1
|Rρσ̂

M |χµM
2
⟩ = ŝL ·Rρ⟨χµM

1
|σ̂M |χµM

2
⟩ = ŝL ·

(
Rρσ̂

M
µM
1 ,µM

2

)
. (44)
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Equation (42) can thus be written as

WM(k̂
M
, ŝM , ρ)

=
1

2

∑
I,µM

1 ,µM
2

[(
RρD⃗

M∗
I,⃗k

M
,µM

1

)
· E⃗

L∗] [(
RρD⃗

M

I,⃗k
M

,µM
2

)
· E⃗

L
]{

δµM
1 ,µM

2
+

[
ŝL ·

(
Rρσ̂

M
µM
2 ,µM

1

)]}

(45)

The vectors that appear on the right-hand side of Eq. (45) can now be grouped into two sets:

(i) vectors that are fixed in the molecular frame such as the dipole transition vectors D⃗
M

I,⃗k
M

,µM ,

photoelectron momentum k⃗
M

, and photoelectron spin expectation value σ̂M
µM
1 ,µM

2
, and (ii) vectors

that are fixed in the laboratory frame such as spin detection axis ŝL and the electric field E⃗
L

. This

will then allow us to use the technique in Ref. 42 in evaluating the orientation averaging
∫
dρ

such that the resulting quantity can be expressed as
∑

ij giMijfj , where, gi and fi are rotational

invariants that are constructed from the two sets of vectors and Mij is the coupling between the

two rotational invariants.

Let us now consider the spin-conditioned expectation value of the molecular orientation un-

der isotropic illumination:

〈
⟨êL⟩ŝL

〉iso
ρ

≡
∫
dΘM

k

∫
dΘp

∫
dρWM(k̂

M
, ŝM , ρ)e⃗L∫

dΘL
s

∫
dΘM

k

∫
dΘp

∫
dρWM(k̂

M
, ŝM , ρ)

. (46)

Instead of a single direction that characterizes the direction of polarization, e.g., x̂L, we introduce

the light field

E⃗
L

p = EL
ω

(
sin θp cosφpx̂

L + sin θp sinφpŷ
L + cos θpẑ

L
)

(47)

Combining Eqs. (45)-(47), then averaging over all molecular orientation
∫
dρ, and orientations of
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the field
∫
dΘp, we finally obtain

〈
⟨êL⟩ŝL

〉iso
ρ

=
1

3S0

(S⃗
M

· e⃗M)ŝL (48)

The product S⃗
M
· e⃗M is maximal when S⃗

M
∥ e⃗M , thus, we can identify S⃗

M
with the molec-

ular axis that becomes oriented. Now, consider a unit polar vector êM pointing in the direction of

the Bloch vector êM ∥ Ŝ
M

in a given enantiomer. The orientation averaged value of ⟨êL⟩ is

〈
⟨êL⟩ŝL

〉iso
ρ

=
ν

3S0

|S⃗
M
|ŝL. (49)

where, ν = ±1 for opposite enantiomers.

A similar straightforward calculation for a light field polarized along ϵ̂L will yield

〈
⟨êL⟩ŝL

〉
ρ
=

1

5S0

[(
2S⃗

M
+ S⃗

′M)]
ŝL − 1

5S0

[(
S⃗

M
+ 3S⃗

′M)]
(ŝL · ϵ̂L)ϵ̂L. (50)

Equation (50) now presents two detection geometries: (i) orthogonal ŝL ⊥ ϵ̂L, and (ii) collinear

ŝL ∥ ϵ̂L which results to different axes of molecular orientation as shown in Eqs. (13) and (14),

respectively. Here, the additional vector S⃗
′M

has the form

S⃗′M =
1

S0

Re

 ∑
I,µM

1 ,µM
2

∫
dΘM

k

(
D⃗

M∗
I,⃗k

M
,µM

1
· σ̂M

µM
2 ,µM

1

)
D⃗

M

I,⃗k
M

,µM
2

 , (51)

which presents the directional bias induced by the well-defined direction of light polarization ϵ̂L.

Estimating the degree of orientation

An estimate of the number of ‘head’ N+ŝ and ‘tail’ N−ŝ molecules corresponding to the averaged

angle ⟨êL · ŝL⟩ = ⟨cos β⟩ between the vector êL and “target” orientation axis ŝL, can be performed
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by adopting the methods of Ref. 43 to model the angular distribution of oriented molecules. Let

Ψ(θ, φ) = a0Y0,0(θ, φ)+b0Y1,0(θ, φ)+
b−√
2
[Y1,−1(θ, φ)−Y1,1(θ, φ)]+i

b+√
2
[Y1,−1(θ, φ)+Y1,1(θ, φ)],

(52)

where, |a0|2+|b0|2+|b−|2+|b+|2 = 1. Without loss of generality, let us consider the spin detection

axis ŝL ∥ ẑL such that

N+ẑ =

∫ 2π

0

dφ

∫ π/2

0

dθ sin θ|Ψ(θ, φ)|2 cos θ = 1

2

(
1 +

3

2
⟨êL · ŝL⟩

)
(53)

N−ẑ = = 1−N+ẑ. (54)

For the case of isotropic illumination of randomly oriented electronic states, Fig. 3, this corre-

sponds to N+ẑ ≈ 0.6 for ⟨êL · ŝL⟩ ≈ 0.13.

O.S., A.F. O. and P.C.F. acknowledge ERC-2021-AdG project ULISSES, grant agreement

No 101054696. Views and opinions expressed are however those of the author(s) only and do not

necessarily reflect those of the European Union or the European Research Council. Neither the

European Union nor the granting authority can be held responsible for them. A.F.O. acknowledges

funding from the Royal Society URF/R1/201333, URF/ERE/210358, and URF/ERE/231177 and

from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 543760364.

28



Appendices

A Chiral superpositions of Argon excited states

The excited states of argon have good quantum numbers J and MJ , when considering spin–orbit

interaction:

Ĥ0 |w⟩ = Ew |w⟩ , ˆ⃗
J2 |w⟩ = J(J + 1) |w⟩ , Ĵz |w⟩ =MJ |w⟩ . (55)

In a close-coupling description of the excited states, the active electron is entangled with the ion. In

the particle–hole basis employed in configuration-interaction singles 40, 41, the excited states have

contributions from multiple ion channels:

|w⟩ =
∑
i

Â (âi |Φ0⟩) |χi⟩ , (56)

where |Φ0⟩ is the Hartree–Fock reference state (the ground state), âi annihilates the ith occupied

orbital, |χi⟩ is the channel-specific orbital for the excited or free electron, and Â is the antisym-

metrization operator. âi |Φ0⟩ is thus an approximation to the state of the ion (Koopmans approxi-

mation), and the orbitals of âi |Φ0⟩ and |χi⟩ are expanded in the ℓjmj basis, wherein the spin–orbit

interaction is diagonal. In our calculations, relativistic effects (of which the spin–orbit interaction

is one), are treated using a relativistic effective-core potential 44 (there are alternative approaches

described in the literature 45–47, but for our purposes, the present approach is more suitable).

For each excited state |w⟩, we may compute the ionization dipole matrix elements ⟨Ik⃗ms|d̂|w⟩,

using a surface-flux technique 37, 40, and they are resolved on the ion state I and the photoelectron
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state in terms of the magnitude k = |⃗k| of the linear momentum, the angular distribution in terms

of the orbital angular momentum (ℓmℓ)k⃗, and the spin ms.

We however desire the ionization dipole matrix elements starting from a chiral superposition

of states which as far as possible resemble factorized one-electron excited states characterized by

nℓmℓsms, i.e. our desired initial wavefunction is given by

|Ψ⟩ = |Ψion⟩

[∑
i

fi |(nℓmℓsms)i⟩

]
def
= |Ψion⟩

∑
i

fi |ki⟩ , (57)

where the ionic state |Ψion⟩ is shared between all terms in the expansion, and the expansion coeffi-

cients fi may be chosen at will. In the second step, we have introduced a short-hand notation for

the state of the electron.

To achieve this goal, we proceed in two steps:

1. Find linear combinations of the true excited states |w⟩ that are approximately factorized into

an ionic part and an electronic part:

|Φi⟩ ≈ |Φion,i⟩ |ki⟩ . (58)

There will be multiple such approximate factorizations, since there are multiple ionization

channels. Below, we discuss how we try to find the “optimal” ones.

2. Given a set {|ki⟩ , ai}, try to find linear combinations of the factorized states (58), that simul-

taneously are as close to the desired chiral superposition as possible, while still maintaining

maximum overlap of the ionic wavefunction, since that increases the purity of the state.
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Figure 5: Overlaps between excited states and spin-configurations, i.e. uncoupled configurations

of spin-orbitals in the nℓmℓsms basis. The spin-configurations (the y axis) are ordered by the

quantum numbers of the excited spin-orbital, given as labels pertaining to the block immediately

above them. It is clearly visible that this overlap matrix is mostly composed of disjoint blocks,

where the excited states are accurately classified by nℓ of the excited spin-orbital.
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State Factorization by Block Diagonalization in Orthogonal Subspaces We define the matrix

B with matrix elements bvw
def
= ⟨v|w⟩, which is the projection of the true excited state |w⟩ given

by (55) on the uncoupled configuration |v⟩ in the ℓmℓsms basis. We may permute the rows and

columns of the matrix B, such that it consists of mostly disjoint blocks Bb, which we can trans-

form separately (see Fig. 5). This is possible since the quantum numbers of the excited electron

are almost good quantum numbers. E.g. a 4s0α state, will contain contributions from 4dmℓ
α con-

figurations, but they will be of less importance, compared to the dominant configurations.

The rows in each block Bb are ordered such that they are grouped by the excited orbital, and

we then wish to apply a transformation to Bb such that it becomes approximately block diagonal,

i.e. we find expansions for states with a particular excited orbital (in the ℓmℓsms basis) in terms

of the true excited states (in the ℓjmj basis). This achieves the approximate factorization (58),

thereby disentangling the states. It will however introduce an energy spread, i.e. the factorized

states are no longer stationary states of the Hamiltonian.

We consider without loss of generality a case with two different excited orbitals |kp⟩ and |kq⟩

(e.g. 4s0α and 4s0β), and drop the b subscript for brevity. The overlap matrix (within this block) is

then given by

B = (P̂ + Q̂)B(P̂ + Q̂), (59)

where P̂ projects on the configurations containing |kp⟩ and Q̂ on configurations containing |kq⟩.
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Within the chosen space, P̂ + Q̂ = 1̂. We wish to find a unitary matrix U , such that
P̂UBQ̂ = 0,

Q̂UBP̂ = 0,

(60)

i.e. a block-diagonalizing transform. We will not be able to achieve this identically, therefore we

formulate it as a minimization problem:

min
U

∥P̂UBQ̂∥
2
+ ∥Q̂UBP̂∥

2

such that U †U = 1̂.

(61)

Its equivalent Lagrangian formulation, incorporating the unitarity constraint on U using a La-

grangian multiplier λ, is given by

L̂ = tr
(
Q̂†B†U †P̂ †P̂UBQ̂

)
+ tr

(
P̂ †B†U †Q̂†Q̂UBP̂

)
+ λ[tr

(
U †U

)
− 1]

= tr
(
Q̂†B†U †P̂UBQ̂

)
+ tr

(
P̂ †B†U †Q̂UBP̂

)
+ λ[tr

(
U †U

)
− 1]

= tr
(
BQ̂B†U †P̂U

)
+ tr

(
BP̂B†U †Q̂U

)
+ λ[tr

(
U †U

)
− 1],

(62)

where we have used the cyclic property of the trace operation, the fact that P̂ †P̂ = P̂ 2 = P̂ , and

similarly for Q̂. Variation of L̂ with respect to U †, and λ, respectively, yields

δU†L̂ = BQ̂B†P̂U +BP̂B†Q̂U + λU = (BQ̂B†P̂ +BP̂B†Q̂+ λ1̂)U,

δλL̂ = U †U − 1̂,

(63)

which we recognize as an eigenvalue problem. The minimization problem (62) may be solved

using any standard non-linear solver; its variation (63) can be used to improve convergence. In our

implementation, however, we employ Riemannian manifold optimization 48 of the minimization

problem (61) as-is; the matrix U is required to stay on the Stiefel manifold, i.e. the matrix manifold
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of matrices with mutually orthonormal columns. In Fig. 6, the optimized U is shown, together with

the transformed overlap matrix UB.

Excited Spin-orbitals
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Unitary transform, 1 − |U| = 1.099 × 10− 13

State #
100 200 300

0.25

0.50

0.75

Figure 6: The left panel shows the optimized unitary transform matrix U . The right panel shows

the overlap matrix UB between rotated excited states and the spin-configurations, again grouped

by the excited spin-orbitals.

With this method, we are able to achieve factorizations that to ≥ 80% have the excited

electron in the desired spin-orbital nℓmℓsms, with some residual contamination from other states;

see Fig. 7 for the subspace of 4p states. The energy spread is typically small: (⟨E2⟩ − ⟨E⟩2)1/2 ≲

10−2⟨E⟩, with the excited states of interest having energies ⟨E⟩ ≳ 0.4Ha.

Deriving Chiral Superpositions As we saw above (e.g. in Fig. 7), there are multiple states that

have the excited electron in the same spin-orbital |ki⟩. Any of these states may be written as a
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Figure 7: The left panel shows the overlaps between the excited states which are dominated

by excited electrons in 4p orbitals, resolved on the individual spin-orbitals. The right panel the

resultant states after applying the unitary transform U within this subspace. As can be seen, the

block-diagonalization is not perfect. Additionally, we have multiple transformed states for each

spin-orbital.
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linear combination of the true excited states (55):

|Φi⟩j =
∑
w

c
(i)
jw |w⟩ = Â

[∑
w

c
(i)
jwâki |w⟩

]
|ki⟩ =⇒

∣∣∣Φ⃗i

〉
= Ci |w⃗⟩ = Â [Ciâki |w⃗⟩] |ki⟩ ,

(64)

where |Φi⟩j is the jth state with the excited electron in the spin-orbital |ki⟩, c(i)jw the corresponding

expansion coefficient for the true eigenstate |w⟩. We also introduce the vector notation
∣∣∣Φ⃗i

〉T def
=[

|Φi⟩1 |Φi⟩2 · · ·
]T

, and similarly for |w⃗⟩. Ci are the corresponding expansion coefficients ar-

ranged into a matrix. In the second step we have written the states on the factorized form (58).

If we now wish to create a factorized chiral superposition of the excited electron, i.e. we wish

to define our initial state according to

|Ψ0⟩ = |Ψion⟩
∑
i

fi |ki⟩ , (65)

for every |ki⟩ we need to make a linear combination of the possible |Φi⟩j such that the ion degrees-

of-freedom maximally overlap; otherwise the factorization (65) does not hold. Symbolically, we

write this as ∣∣∣g⃗i · Φ⃗i

〉
= g⃗Hi Ci |w⃗⟩ = Â

[
g⃗Hi Ciâki |w⃗⟩

]
|ki⟩ . (66)

To achieve the desired factorized state (65), we thus have to solve the following maximization

problem:

max
G

[
g⃗Hi Ciâki |w⃗⟩

]H [
g⃗Hj Cj âkj |w⃗⟩

]
= max

G

[
⟨w⃗| â†kiC

H
i g⃗i

][
g⃗Hj Cj âkj |w⃗⟩

]
,

such that ∥g⃗i∥2 = 1,∀i,
(67)

where the ith column of the matrix G is the vector g⃗i.
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B Quantifying spin-orientation locking

Using perturbation theory, the full spinor valued electron wave-function at the end of the ionizing

pulse can be written as

|ψ⟩ = |ψo⟩+
∑
I,µM

∫
dΘM

k c
I,⃗k

M
,µM

|IΨ(−)

I,⃗k
M

,µM
⟩, (68a)

c
I,⃗k

M
,µM

= i
(
D⃗

L

I,⃗k
M

,µM · E⃗
L
)

(68b)

where |ψo⟩ is the ground state of the molecule, I denotes the ionic channel, |Ψ(−)

I,⃗k
M

,µM
⟩ is the fully

spin-coupled continuum state with momentum k⃗
M

. The transition dipole matrix element in the

laboratory frame is D⃗
L

I,⃗k
M

,µM ≡ ⟨IΨ(−)

I,⃗k
M

,µM
|d⃗

L
|ψo⟩ (see Eq.(31) for details), and the laser field is

E⃗
L

.

The spin and momentum resolved photoionization rate for a given orientation is obtained by

projecting onto the scattering and ionic states with fixed total energy E by taking the contributions

of the spin-up and down photoelectrons along the spin-detection axis ŝL as well as final ion states

via the projector

P̂ =
∑

I,µM
1 ,µM

2

|IΨ(−)

I,⃗k
M

,µM
1

⟩
[
I+ ŝM · σ̂M

2

]
µM
2 ,µM

1

⟨IΨ(−)

I,⃗k
M

,µM
2

|. (69)

Here, the spin-detection axis is rotated from the laboratory to the molecular frame ŝL = Rρŝ
M ,

and σ̂M is the vector of Pauli spin matrices

σ̂M =

0 1

1 0

 ξ̂
M

+

0 −i

i 0

 η̂M +

1 0

0 −1

 ζ̂
M
. (70)
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Performing the necessary operations, we get

WM(k̂
M
, ŝM , ρ) = ⟨ψ|P̂|ψ⟩

=
∑
I,I1,I2

∑
µM
1 ,µM

2

∑
νM1 ,νM2

∫
dΘM

k1

∫
dΘM

k2
c∗
I1 ,⃗k

M
1 ,µM

1

c
I2 ,⃗k

M
2 ,µM

2

⟨I1Ψ(−)

I1 ,⃗k
M
1 ,µM

1

|IΨ(−)

I,⃗k
M

,νM1
⟩

×
[
I+ ŝM · σ̂M

2

]
νM2 ,νM1

⟨IΨ(−)

I,⃗k
M

,νM2
|I2Ψ(−)

I2 ,⃗k
M
2 ,µM

2

⟩

=
1

2

∑
I,µ1,µ2

c∗
I,⃗k

M
,µM

1

c
I,⃗k

M
,µM

2

(
δµM

1 ,µM
2
+ ŝM · σ̂M

µM
2 ,µM

1

)
=
1

2

∑
I,µM

1 ,µM
2

(
D⃗

L∗
I,⃗k

M
,µM

1
· E⃗

L∗)(
D⃗

L

I,⃗k
M

,µM
2
· E⃗

L
)(

δµM
1 ,µM

2
+ ŝL · σ̂L

µM
2 ,µM

1

)
, (71)

which follows from the orthogonality relation

⟨I1Ψ(−)

I1 ,⃗k1,µ1
|I2Ψ(−)

I2k⃗2,µ2
⟩ = δ(k⃗1 − k⃗2)δµ1,µ2δI1,I2 . (72)

We have also introduced vector

σ̂L
µM
2 ,µM

1
= ⟨χµM

2
|σ̂L|χµM

1
⟩ = ⟨χµM

2
|Rρσ̂

M |χµM
1
⟩ = Rρσ̂

M
µM
2 ,µM

1
(73)

where Rρ is rotation matrix,

σ̂M
± 1

2
,± 1

2
= ±ζ̂

M
, σ̂M

± 1
2
,∓ 1

2
= ξ̂

M ∓ iη̂M = σ̂M∗
∓ 1

2
,± 1

2
. (74)

The last line of Eq. (71) also follows from the relation ŝL · σ̂L
µM
2 ,µM

1
= ŝM · σ̂M

µM
2 ,µM

1
.

The main results of the paper will involve the average over all molecular orientations of the

momentum- and spin-resolved photoionization yield WM(k̂
M
, ŝM , ρ), Eq. (71), where, the ori-

entation ρ ≡ αβγ is defined by the Euler angles in the zyz-convention. Now, Eq. (71) fixes the

photoelectron momentum and spin-detection axis in the molecular and laboratory frame, respec-

tively, in order to simplify the evaluation of Eq. (71). By doing so, the transition dipole matrix
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element in the molecular frame D⃗
M

I,⃗k
M

,µM will not have any argument that depends on the orienta-

tion ρ, and can therefore be trivially rotated into the lab frame:

D⃗
L

I,⃗k
M

,µM =⟨IΨ(−)

I,⃗k
M

,µM
|d⃗

L
|ψo⟩ = ⟨IΨ(−)

I,⃗k
M

,µM
|Rρd⃗

M
|ψo⟩

=Rρ⟨IΨ(−)

I,⃗k
M

,µM
|d⃗

M
|ψo⟩ = RρD⃗

M

I,⃗k
M

,µM . (75)

Meanwhile, by fixing the spin-detection axis in the lab frame, the spin projection operator P̂ŝ =(
I+ ŝL · σ̂L

)
/2 essentially rotates the direction of photoelectron spin from the molecular to the

laboratory frame, then projects it to the spin-detection axis ŝL:

ŝL · σ̂L
µM
1 ,µM

2
= ŝL · ⟨χµM

1
|Rρσ̂

M |χµM
2
⟩ = ŝL ·Rρ⟨χµM

1
|σ̂M |χµM

2
⟩ = ŝL ·

(
Rρσ̂

M
µM
1 ,µM

2

)
. (76)

Equation (71) can thus be written as

WM(k̂
M
, ŝM , ρ)

=
1

2

∑
I,µM

1 ,µM
2

[(
RρD⃗

M∗
I,⃗k

M
,µM

1

)
· E⃗

L∗] [(
RρD⃗

M

I,⃗k
M

,µM
2

)
· E⃗

L
]{

δµM
1 ,µM

2
+

[
ŝL ·

(
Rρσ̂

M
µM
2 ,µM

1

)]}

(77)

The vectors that appear on the right-hand side of Eq. (77) can now be grouped into two sets:

(i) vectors that are fixed in the molecular frame such as the dipole transition vectors D⃗
M

I,⃗k
M

,µM ,

photoelectron momentum k⃗
M

, and photoelectron spin expectation value σ̂M
µM
1 ,µM

2
, and (ii) vectors

that are fixed in the laboratory frame such as spin detection axis ŝL and the electric field E⃗
L

. This

will then allow us to use the technique in Ref. 42 in evaluating the orientation averaging
∫
dρ

such that the resulting quantity can be expressed as
∑

ij giMijfj , where, gi and fi are rotational

invariants that are constructed from the two sets of vectors and Mij is the coupling between the
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two rotational invariants. For our purposes, the following vector identities will be relevant:

∫
dρ(a⃗L · u⃗L)⃗b

L
=

1

3
(a⃗M · b⃗

M
)u⃗L (78)

∫
dρ(a⃗L · u⃗L)(⃗b

L
· v⃗L)c⃗L =

1

6
[(a⃗M × b⃗

M
) · c⃗M ](u⃗L × v⃗L) (79)

∫
dρ(a⃗L · u⃗L)(⃗b

L
· v⃗L)(c⃗L · w⃗L)d⃗

L

=
1

30


(a⃗M · b⃗

M
)(c⃗M · d⃗

M
)

(a⃗M · c⃗M)(⃗b
M

· d⃗
M
)

(a⃗M · d⃗
M
)(⃗b

M
· c⃗M)



T 
4 −1 −1

−1 4 −1

−1 −1 4




(u⃗L · v⃗L)w⃗L

(u⃗L · w⃗L)v⃗L

(v⃗L · w⃗L)u⃗L

 (80)

Let us now consider the spin-conditioned expectation value of the molecular orientation un-

der isotropic illumination:

〈
⟨êL⟩ŝL

〉iso
ρ

≡
∫
dΘM

k

∫
dΘp

∫
dρWM(k̂

M
, ŝM , ρ)e⃗L∫

dΘL
s

∫
dΘM

k

∫
dΘp

∫
dρWM(k̂

M
, ŝM , ρ)

(81)

Instead of a single direction that characterizes the direction of polarization, e.g., x̂L, we introduce

the light field

E⃗
L

p = EL
ω

(
sin θp cosφpx̂

L + sin θp sinφpŷ
L + cos θpẑ

L
)

(82)

Substituting Eq. (77) into the numerator of Eq. (81) we get

∫
dΘM

k

∫
dΘp

∫
dρWM(k̂

M
, ŝM , ρ)e⃗L

=
1

2

∑
I,µM

1 ,µM
2

∫
dΘM

k

∫
dΘp

∫
dρ

(
D⃗

L∗
I,⃗k

M
,µM

1
· E⃗

L∗
p

)(
D⃗

L

I,⃗k
M

,µM
2
· E⃗

L

p

)
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×
(
δµM

1 ,µM
2
+ ŝL · σ̂µM

2 ,µM
1

)
e⃗L (83)

Using Eq. (79), the first term of Eq. (83) simplifies into

1

2

∑
I,µ

∫
dΘM

k

∫
dΘp

∫
dρ

∣∣∣D⃗L

k⃗
M

,µM · E⃗
L

p

∣∣∣2 e⃗L

=
1

12

{[∑
I,µ

∫
dΘM

k

(
D⃗

M∗
k⃗
M

,µM × D⃗
M

k⃗
M

,µM

)]
· e⃗M

}[∫
dΘp

(
E⃗

L∗
p × E⃗

L

p

)]
= 0, (84)

which vanishes after averaging over all orientations of the field. Similarly, it follows from Eq. (80)

that the second term of Eq. (83)

1

2

∑
I,µM

1 ,µM
2

∫
dΘM

k

∫
dΘp

∫
dρ

(
D⃗

L∗
I,⃗k

M
,µM

1
· E⃗

L∗
p

)(
D⃗

L

I,⃗k
M

,µM
2
· E⃗

L

p

)(
ŝL · σ̂L

µM
2 ,µM

1

)
e⃗L

=
1

60


∑∫

dΘM
k

(
D⃗

M∗
I,⃗k

M
,µM

1
· D⃗

M

I,⃗k
M

,µM
2

)(
σ̂M

µM
2 ,µM

1
· e⃗M

)
∑∫

dΘM
k

(
D⃗

M∗
I,⃗k

M
,µM

1
· σ̂M

µM
2 ,µM

1

)(
D⃗

M

I,⃗k
M

,µM
2
· e⃗M

)
∑∫

dΘM
k

(
D⃗

M∗
I,⃗k

M
,µM

1
· e⃗M

)(
D⃗

M

I,⃗k
M

,µM
2
· σ̂M

µM
2 ,µM

1

)



T

×


4 −1 −1

−1 4 −1

−1 −1 4




∫
dΘp|E⃗

L

p |2ŝL∫
dΘp(E⃗

L∗
p · ŝL)E⃗

L

p∫
dΘp(E⃗

L

p · ŝL)E⃗
L∗
p



=
1

60


g1

g2

g∗2



T 
4 −1 −1

−1 4 −1

−1 −1 4




f1

f2

f ∗
2


=

1

30
(2f1 − Re[f2]) g1 −

1

30
(f1 − 3Re[f2])Re[g2]−

1

6
Im[f2]Im[g2] (85)
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Averaging over all orientations of the field, the second term of Eq. (83) now simplifies into

1

2

∑
I,µM

1 ,µM
2

∫
dΘM

k

∫
dΘp

∫
dρ

(
D⃗

L∗
I,⃗k

M
,µM

1
· E⃗

L∗
p

)(
D⃗

L

I,⃗k
M

,µM
2
· E⃗

L

p

)(
ŝL · σ̂L

µM
2 ,µM

1

)
e⃗L

=
|EL

ω |2

18


 ∑

I,µM
1 ,µM

2

∫
dΘM

k

(
D⃗

M∗
I,⃗k

M
,µM

1
· D⃗

M

I,⃗k
M

,µM
2

)
σ̂M

µM
2 ,µM

1

 · e⃗M

 ŝL

=
|EL

ω |2S0

18
(S⃗

M
· e⃗M)ŝL. (86)

Last, the denominator of Eq. (81) simplifies into

∫
dΘL

s

∫
dΘM

k

∫
dΘp

∫
dρWM(k̂

M
, ŝM , ρ)

=
|EL

ω |2

6

∑
I,µ

∫
dΘM

k

∣∣∣D⃗M

I,⃗k
M

,µM
2

∣∣∣2 = |EL
ω |2

6
S0 (87)

Thus, we finally obtain

〈
⟨êL⟩ŝL

〉iso
ρ

=
1

3
(S⃗

M
· e⃗M)ŝL (88)

A similar straightforward calculation for a light field polarized along ϵ̂L will yield

〈
⟨êL⟩ŝL

〉
ρ
=

1

5

[(
2S⃗

M
+ S⃗

′M)]
ŝL − 1

5

[(
S⃗

M
+ 3S⃗

′M)]
(ŝL · ϵ̂L)ϵ̂L. (89)
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17. Medina, E., López, F., Ratner, M. A. & Mujica, V. Chiral molecular films as electron polarizers

and polarization modulators. Europhysics Letters 99, 17006 (2012).

18. Eremko, A. & Loktev, V. Spin sensitive electron transmission through helical potentials. Phys-

ical Review B—Condensed Matter and Materials Physics 88, 165409 (2013).

19. Varela, S., Medina, E., Lopez, F. & Mujica, V. Inelastic electron scattering from a helical po-

tential: transverse polarization and the structure factor in the single scattering approximation.

Journal of Physics: Condensed Matter 26, 015008 (2013).

20. Gutierrez, R., Dı́az, E., Naaman, R. & Cuniberti, G. Spin-selective transport through helical

molecular systems. Physical Review B—Condensed Matter and Materials Physics 85, 081404

(2012).

44



21. Guo, A.-M. & Sun, Q.-f. Spin-selective transport of electrons in dna double helix. Physical

review letters 108, 218102 (2012).

22. Matityahu, S., Utsumi, Y., Aharony, A., Entin-Wohlman, O. & Balseiro, C. A. Spin-dependent

transport through a chiral molecule in the presence of spin-orbit interaction and nonunitary

effects. Physical Review B 93, 075407 (2016).

23. Varela, S., Mujica, V. & Medina, E. Effective spin-orbit couplings in an analytical tight-

binding model of dna: Spin filtering and chiral spin transport. Physical Review B 93, 155436

(2016).

24. Peter, J. S., Ostermann, S. & Yelin, S. F. Chirality dependent photon transport and helical

superradiance. Phys. Rev. Res. 6, 023200 (2024). URL https://link.aps.org/doi/

10.1103/PhysRevResearch.6.023200.

25. Maslyuk, V. V., Gutierrez, R., Dianat, A., Mujica, V. & Cuniberti, G. Enhanced magnetore-

sistance in chiral molecular junctions. The journal of physical chemistry letters 9, 5453–5459

(2018).

26. Dı́az, E., Domı́nguez-Adame, F., Gutierrez, R., Cuniberti, G. & Mujica, V. Thermal decoher-

ence and disorder effects on chiral-induced spin selectivity. The journal of physical chemistry

letters 9, 5753–5758 (2018).
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